Abstract

A novel wavelength locking scheme called acousto-optic frequency modulation (AOFM) is put forward and demonstrated experimentally. The laser frequency is modulated by an acousto-optic modulator, rather than direct dithering on the laser resonator. A new optical configuration is proposed to compensate the angular deflection of the acousto-optic modulator, which is driven by a Direct Digital Synthesis generator with a frequency stability and precision on the order of Hz. This locking scheme is relatively simple and economical, and it can avoid extra frequency and intensity noise due to the direct frequency dither on the laser resonator in the conventional saturation absorption locking scheme. Our scheme provides a new way to improve the noise and stability of the tunable laser.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
    [CrossRef]
  2. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21(16), 1280–1282 (1996).
    [CrossRef] [PubMed]
  3. M. S. Taubman and J. L. Hall, “Cancellation of laser dither modulation from optical frequency standards,” Opt. Lett. 25(5), 311–313 (2000).
    [CrossRef]
  4. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
    [CrossRef] [PubMed]
  5. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
    [CrossRef]
  6. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7(11), 537–539 (1982).
    [CrossRef] [PubMed]
  7. J. F. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
    [CrossRef]
  8. D. J. Hopper and E. Jaatinen, “Optimizing modulation transfer spectroscopy signals for frequency locking in the presence of depleted saturating fields,” Appl. Opt. 47(14), 2574–2582 (2008).
    [CrossRef] [PubMed]
  9. J. Zhang, D. Wei, C. Xie, and K. Peng, “Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum,” Opt. Express 11(11), 1338–1344 (2003).
    [CrossRef] [PubMed]
  10. Z. Zhang, J. Lu, Y. Xiu, Z. Wang, and Q. Lin, “Application of DDS in laser modulation,” Proc. SPIE 6824, 68241Q1–68241Q6 (2007).
  11. Eva Murphy and Colm Slattery, Analog Dialogue 38-08, August (2004).
  12. T. Henry, Nicholas and Henry Samueli, “An analysis of the output spectrum of direct digital frequency synthesizers in the presence of phase-accumulator truncation,” in Proc. 41st Annual Frequency Control Symp., Ft. Monmouth, NJ, May 1987, USERACOM, pp. 495–502.
  13. J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
    [CrossRef]
  14. Analogy Devices, Datasheet of AD9951.

2008 (1)

2007 (1)

J. F. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[CrossRef]

2003 (1)

2000 (1)

1996 (1)

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

1982 (1)

1980 (1)

1971 (1)

J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5(1), 15–17 (1980).
[CrossRef] [PubMed]

Eble, J. F.

J. F. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[CrossRef]

Gold, B.

J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
[CrossRef]

Hall, J. L.

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Hopper, D. J.

Jaatinen, E.

Jungner, P.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

Peng, K.

Rader, C. M.

J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
[CrossRef]

Schmidt-Kaler, F.

J. F. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[CrossRef]

Shirley, J. H.

Swartz, S.

Taubman, M. S.

Tierney, J.

J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
[CrossRef]

Wei, D.

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Xie, C.

Ye, J.

Zhang, J.

Appl. Opt. (1)

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32(3), 145–152 (1983).
[CrossRef]

J. F. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B 88(4), 563–568 (2007).
[CrossRef]

IEEE Trans. Audio Electroacoust. (1)

J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[CrossRef]

Other (4)

Analogy Devices, Datasheet of AD9951.

Z. Zhang, J. Lu, Y. Xiu, Z. Wang, and Q. Lin, “Application of DDS in laser modulation,” Proc. SPIE 6824, 68241Q1–68241Q6 (2007).

Eva Murphy and Colm Slattery, Analog Dialogue 38-08, August (2004).

T. Henry, Nicholas and Henry Samueli, “An analysis of the output spectrum of direct digital frequency synthesizers in the presence of phase-accumulator truncation,” in Proc. 41st Annual Frequency Control Symp., Ft. Monmouth, NJ, May 1987, USERACOM, pp. 495–502.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The experimental setup. ISO, isolator; ATT, attenuator; DDS, DDS acousto-optic driver; PD, photodiode; AMP, amplifier; BPF, band-pass filter; REF, reference signal.

Fig. 2
Fig. 2

The optical layout to compensate the angular deflection due to the frequency modulation. 0 represents the zero order diffraction beam. B2 represents the minus-first order diffraction beam. Solid line represents the minus-first order diffraction beam at one frequency, and the dash line at another frequency.

Fig. 3
Fig. 3

The scheme of the reference signal (REF) and the output frequency (F) of the DDS.

Fig. 4
Fig. 4

These are the output spectra of the DDS driver. In the left figure the input TTL level is high and the output frequency is 121 MHz. In the right figure the input is low and the output frequency is 120 MHz.

Fig. 5
Fig. 5

The scheme of the DDS driver for the AOM. MCU, micro control unit; AMP, amplifier; ATT, attenuator; LPF, Low Pass Filter, with a cut-off frequency of 160 MHz.

Fig. 6
Fig. 6

(a) the saturated absorption spectra (lower curve) and the lock-in output (upper curve). (b) The saturated absorption signal after locking.

Fig. 7
Fig. 7

The beat note between the laser 1 and the laser 2. The laser 1 is AOFM locked in the figure (a) and dither locked in the figure (b).

Fig. 8
Fig. 8

The configuration of the comparison experiment.

Metrics