Abstract

Experiments addressing supramolecular dynamics at interfaces are of paramount importance for the understanding of the dynamic behaviour of polymers, particles, or cells at interfaces, transport phenomena to and from surfaces, thin films or membranes. However, there are only few reports in the literature due to the paucity of experimental methods that offer the required spatial and time resolution. Evanescent wave dynamic light scattering originally developed to meet these needs has limited sensitivity and is restricted to glass substrates. Here we report the first experimental realization of a dynamic light scattering experiment close to an interface using surface plasmon polaritons as light source offering a strong increase in the signal to noise ratio and allowing for the use of metallic interfaces. As a proof of concept, we consider the diffusion of particles with radii down to 10nm in dilute dispersions close to a gold surface.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007).
    [CrossRef]
  2. S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
    [CrossRef] [PubMed]
  3. K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007).
    [CrossRef] [PubMed]
  5. K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
    [CrossRef] [PubMed]
  6. G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
    [CrossRef] [PubMed]
  7. M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
    [CrossRef]
  8. N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
    [CrossRef]
  9. P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
    [CrossRef] [PubMed]
  10. V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
    [CrossRef] [PubMed]
  11. G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
    [CrossRef] [PubMed]
  12. R. B. M. Schasfoort, and A. J. Tudos, Handbook of Surface Plasmon Resonance (RSC Publishing, Cambridge, 2008).
    [CrossRef]
  13. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
    [CrossRef]
  14. J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev. 108, 462-493 (2008).
    [CrossRef] [PubMed]
  15. A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
    [CrossRef]
  16. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988).
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  18. E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).
  19. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000).
    [CrossRef]
  20. Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990).
    [CrossRef]
  21. J. Happel and H. Brenner, Low Reynolds number Hydrodynamics with special applications to particulate media (Nijhoff, The Hague, 1983), Chap. 7.
  22. S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)
  23. A. Unger, U. Trutschel, and U. Langbein, "Design software for stratified optical systems with planar and cylindrical symmetry," in DGaO-Proceedings 2007; http://www.dgao-proceedings.de/download/108/108_p12.pdf).
  24. WINSPALL is a software which computes the reflectivity of optical multilayer systems. It is based on the fresnel equations and the matrix formalism and can be downloaded from: http://www.mpip-mainz.mpg.de/knoll/soft/
  25. M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
    [CrossRef]
  26. J. Dostálek, Austrian Research Centers GmbH, Nano-System-Technologies TechGate: Donau-City-Straße 1, 1220 Vienna, Austria (personal communication, 2009)

2009

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

2008

J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

2007

S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007).
[CrossRef] [PubMed]

P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
[CrossRef] [PubMed]

2005

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

2004

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

2002

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

2000

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
[CrossRef]

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

1998

M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

1996

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

1990

Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990).
[CrossRef]

1986

K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
[CrossRef] [PubMed]

1968

E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).

Advincula, R. C.

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

Anastasiadis, S. H.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Baba, A.

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

Bae, S. C.

S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007).
[CrossRef]

Banerjee, A.

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Brady, J. F.

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

Cann, P. S.

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

Chen, Y.

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Choi, C. K.

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dhont, J.

P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ekgasit, S.

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

Factor, B. J.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Fukui, M.

Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990).
[CrossRef]

Fytas, G.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007).
[CrossRef] [PubMed]

Granick, S.

S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007).
[CrossRef]

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Gratton, E.

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Holmqvist, P.

P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

Hosoda, M.

M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
[CrossRef]

Joy, M. J.

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

Kihm, K. D.

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

Knoll, W.

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Kretschmann, E.

E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).

Lan, K. H.

K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
[CrossRef] [PubMed]

Lang, P.

P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
[CrossRef] [PubMed]

Li, J.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

Lin, N.

N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
[CrossRef]

Loppinet, B.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Michailidou, V. N.

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

Muller, J. D.

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Naoi, Y.

Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990).
[CrossRef]

Ostrowsky, N.

K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
[CrossRef] [PubMed]

Park, M. K.

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

Perkins, E. A.

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

Petekidis, G.

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).

Rice, S. A.

N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
[CrossRef]

Rühe, J.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Sakai, K.

M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
[CrossRef]

Sambles, J. R.

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

Schweizer, K. S.

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Seghrouchni, R.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Sigel, R.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Sornette, D.

K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
[CrossRef] [PubMed]

Sukhishvili, S. A.

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

Swan, J. W.

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

Takagi, K.

M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
[CrossRef]

Takagi, T.

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

Tangcharoenbumrungsuk, A.

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

Theobald, W.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Toprakcioglu, C.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Vlassopoulos, D.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Yakubov, G. E.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Yu, F.

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

Yu, J.

N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
[CrossRef]

Zhang, H.

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

S. C. Bae and S. Granick, "Molecular Motion at Soft and Hard Interfaces: From Phospholipid Bilayers to Polymers and Lubricants," Annu. Rev. Phys. Chem. 58, 353-374 (2007).
[CrossRef]

W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998).
[CrossRef]

Appl. Phys. Lett.

M. J. Joy, P. S. Cann, J. R. Sambles and E. A. Perkins "Surface-plasmon-enhanced light scattering from microscopic spheres," Appl. Phys. Lett. 83, 3006-3008 (2003).
[CrossRef]

Chem. Rev.

J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev. 108, 462-493 (2008).
[CrossRef] [PubMed]

Colloids Surf. A

T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000).
[CrossRef]

Exp. Fluids

K. D. Kihm, A. Banerjee, C. K. Choi, and T. Takagi, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)," Exp. Fluids 37, 811-824 (2004).
[CrossRef]

J. Chem. Phys.

P. Holmqvist, J. Dhont, and P. Lang, "Colloidal dynamics near a wall studied by evanescent wave light scattering: Experimental and theoretical improvements and methodological limitations," J. Chem. Phys. 126, 044707 (2007).
[CrossRef] [PubMed]

Langmuir

A. Baba, M. K. Park, R. C. Advincula, and W. Knoll, "Simultaneous Surface Plasmon Optical and Electrochemical Investigation of Layer-by-Layer Self-Assembled Conducting Ultrathin Polymer Films," Langmuir 18, 4648-4652 (2002).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445,39-46 (2007).
[CrossRef] [PubMed]

S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick, "Materials science: Diffusion of a polymer pancake," Nature 406, 146-146 (2000).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Phys. Rev. B

Y. Naoi and M. Fukui, "Intensity of surface-plasmon polariton energy emitted into the air side in an air/Ag-film/prism configuration," Phys. Rev. B 42, 5009-5012 (1990).
[CrossRef]

Phys. Rev. E

M. Hosoda, K. Sakai, and K. Takagi, "Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy," Phys. Rev. E 58, 6275-6280 (1998).
[CrossRef]

N. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62, 3909-3919 (2000).
[CrossRef]

Phys. Rev. Lett.

K. H. Lan, N. Ostrowsky, and D. Sornette," Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave," Phys. Rev. Lett. 57, 17-20 (1986).
[CrossRef] [PubMed]

V. N. Michailidou, G. Petekidis, J. W. Swan, and J. F. Brady, "Dynamics of Concentrated Hard-Sphere Colloids Near a Wall," Phys. Rev. Lett. 102, 068302 (2009).
[CrossRef] [PubMed]

G. E. Yakubov, B. Loppinet, H. Zhang, J. Rühe, R. Sigel, and G. Fytas "Collective Dynamics of an End-Grafted Polymer Brush in Solvents of Varying Quality," Phys. Rev. Lett. 92, 115501 (2004).
[CrossRef] [PubMed]

Science

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu "Probing Collective Motions of Terminally Anchored Polymers," Science 274, 2041-2044 (1996).
[CrossRef] [PubMed]

Sens. Actuators B

S. Ekgasit, A. Tangcharoenbumrungsuk, F. Yu, A. Baba, and W. Knoll, "Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics," Sens. Actuators B 105, 532-541 (2005)

Z. Naturforsch.

E. Kretschmann, and H. Raether "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. 23a, 2135-2136 (1968).

Other

J. Happel and H. Brenner, Low Reynolds number Hydrodynamics with special applications to particulate media (Nijhoff, The Hague, 1983), Chap. 7.

A. Unger, U. Trutschel, and U. Langbein, "Design software for stratified optical systems with planar and cylindrical symmetry," in DGaO-Proceedings 2007; http://www.dgao-proceedings.de/download/108/108_p12.pdf).

WINSPALL is a software which computes the reflectivity of optical multilayer systems. It is based on the fresnel equations and the matrix formalism and can be downloaded from: http://www.mpip-mainz.mpg.de/knoll/soft/

J. Dostálek, Austrian Research Centers GmbH, Nano-System-Technologies TechGate: Donau-City-Straße 1, 1220 Vienna, Austria (personal communication, 2009)

R. B. M. Schasfoort, and A. J. Tudos, Handbook of Surface Plasmon Resonance (RSC Publishing, Cambridge, 2008).
[CrossRef]

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(A) The REDLS-Setup is a standard Kretschmann-Raether configuration (p-polarized light at an incidence angle Ψ) of a SPR combined with a DLS technique to record the intensity correlation function at an angle Θ defining the scattering vector q=ks-ki , with ki and ks being the wave vectors of the evanescent and scattered electric field. The enlarged region in the middle cartoons the scattering volume with the electromagnetic field of the surface plasmon, its penetration depth (ξ=200nm) and its footprint (d≈200µm). Only particles within the evanescent field contribute to the scattered light (γ). The condition for surface plasmon excitation by light is given by Eq. (1). (B) Field enhancement in the SPR (red line) compared to total internal reflection (black line). A reflection curve of a surface plasmon with Ψc being the total internal reflection angle is shown in the inset. (C) Normalized field-autocorrelation-function C(q,t) for polystyrene latex spheres with radius R=30nm and c=0.56g/l at a scattering angle Θ=112° (q=0.022nm-1) represented by an exponential decay function (solid line).

Fig. 2.
Fig. 2.

Time correlation functions for particle diffusion near a gold surface obtained by REDLS. (A) Correlation functions G(q,t) for dilute solution of polystyrene spheres (c=0.56g/l with R=30nm at various scattering angles (square:Θ=54.8°, q=0.012nm-1 ; triangle: Θ=90°, q=0.019nm-1 ; circle: Θ=125.2°, q=0.023nm-1) represented (solid lines) by the stretched exponential function [Eq. (3)]. The deviation from the single exponential shape is more pronounced at low scattering angles. The correlation function for pure water recorded at q=0.019nm-1 is a flat base line (gray circles). The scattering intensity (q=0.019nm-1) from the particles (given by the product of the total scattering intensity from the solution in the illuminated volume in Fig. 1(A) and the short time plateau value G(q,0)) is a linear function of the particle concentration in dilute solutions as it is depicted in the inset. (B) Normalized correlation functions C(q,t) for dilute solutions of PS with R=20nm (c=0.9g/l, blue symbols) and R=30nm (c=0.56g/l, red symbols) at q=0.022nm-1 represented well (deviation plot) by an exponential shape. The inset shows a comparison between the values of the particle radius R* obtained by REDLS at q=0.019nm-1 (open circles) and conventional DLS in the bulk dilute solutions (dashed line).

Fig. 3.
Fig. 3.

Particle diffusion at a water/gold interface. The variation of the relaxation rate Γ obtained either from the initial slope (Γc, open symbols) or from integral (Γav, solid symbols) of the time correlation functions (Fig. 2) for particle Brownian motion near the gold surface at a penetration depth ξ=200nm with the magnitude of the scattering wave vector q. The dashed line indicates Γ0=D0q2 for the free Brownian motion of the PS particles ((A) R=20nm, c=0.9g/l and (B) R=30nm, c=0.56g/l) in the bulk solution as obtained by the conventional DLS. The confined Brownian motion near the gold surface is modelled by a hindered anisotropic diffusion (eq.5) using D⊥/D0=0.65 (for R=30nm) and D⊥/D0=0.70 (for R=20nm) and D‖/D0=0.85 (cp. Fig. 4 of reference [9]).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sinΨ=1εp·εm·εdεm+εd
D0=kBT6πηR
C(q,t)=exp {(Γs·t)β}
lnC(q,t)=Γct+(μ22)t2
Γc=Q2D+(Q2+1ξ2)D
q=2kisin(Θ2)

Metrics