Abstract

We demonstrate a novel kind of tunable optical delays based on dynamic grating generated by Brillouin scattering in an optical fiber. An axial strain gradient is applied to a 15 m section of a polarization-maintaining fiber, and the Brillouin reflection grating is generated position-selectively by controlling the optical frequencies of Brillouin pump waves. Tunable time delays of up to 132 ns are achieved with an 82 ns Gaussian pulse.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective (Morgan Kaufmann, San Francisco, CA, 2002) 2nd Ed., Chap. 12.
  3. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
    [CrossRef]
  4. E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005).
    [CrossRef] [PubMed]
  5. K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
    [CrossRef]
  6. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  7. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Express 14, 12022-12027 (2006).
    [CrossRef] [PubMed]
  8. R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light," Ch. 6 in Progress in Optics43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497-530.
    [CrossRef]
  9. K. Y. Song, M. G. Herráez and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
    [CrossRef] [PubMed]
  10. J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
    [CrossRef] [PubMed]
  11. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13,6234-6249 (2005).
    [CrossRef] [PubMed]
  12. K. Y. Song, W. Zou, Z. He, and K. Hotate, "All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber," Opt. Lett. 33, 926-929 (2008).
    [CrossRef] [PubMed]
  13. W. Zou, Z. He, and K. Hotate, "Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber," Opt. Express 17, 1248-1255 (2009.
    [CrossRef] [PubMed]
  14. M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]
  15. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass fiber," Opt. Express 14, 11766-11772 (2006).
    [CrossRef] [PubMed]
  16. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005).
    [CrossRef] [PubMed]
  17. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef]

2009

2008

2006

2005

2000

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

1997

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Abedin, K. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Choi, E.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Dahan, D.

Eisenstein, G.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Gaeta, A. L.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hakami, F.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

Hakami, H.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

Hall, K. L.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

He, Z.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Herráez, M. G.

Hotate, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Lee, B. H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

Moriarty, D. T.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

Mudhana, G.

Na, J.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Okawachi, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rauschenbach, K. A.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Robinson, B. S.

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

Ryu, S. Y.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sharping, J. E.

Song, K. Y.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Thévenaz, L.

van Howe, J.

Wang, Y.

Willner, A. E.

Xu, C.

Zou, W.

IEEE Photon. Technol. Lett.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, "True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings," IEEE Photon. Technol. Lett. 9, 1529-1531 (1997).
[CrossRef]

K. L. Hall, D. T. Moriarty, H. Hakami, F. Hakami, B. S. Robinson, and K. A. Rauschenbach, "An ultrafast variable optical delay technique," IEEE Photon. Technol. Lett. 12, 208-210 (2000).
[CrossRef]

J. Lightwave Technol.

M. Nikles, L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single mode optical fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Opt. Express

K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass fiber," Opt. Express 14, 11766-11772 (2006).
[CrossRef] [PubMed]

K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005).
[CrossRef] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
[CrossRef]

K. Y. Song, M. G. Herráez and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13,6234-6249 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, "Large tunable optical delays via self-phase modulation and dispersion," Opt. Express 14, 12022-12027 (2006).
[CrossRef] [PubMed]

E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, "Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber," Opt. Express 17, 1248-1255 (2009.
[CrossRef] [PubMed]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective (Morgan Kaufmann, San Francisco, CA, 2002) 2nd Ed., Chap. 12.

R. W. Boyd and D. J. Gauthier, "‘Slow’ and ‘Fast’ Light," Ch. 6 in Progress in Optics43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497-530.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Operation principle of Brillouin dynamic grating in a polarization maintaining fiber (PMF). Note that νB is the Brillouin frequency of the PMF along the slow axis (x-pol.).

Fig. 2.
Fig. 2.

Experimental setup for tunable optical delays based on Brillouin dynamic grating: LD, laser diode; SSBM, single-sideband modulator; EDFA, Er-doped fiber amplifier; PBS, polarization beam splitter; Pol., polarizer; EOM, electro-optic modulator; OSA, optical spectrum analyzer. The inset is the photograph of the PMF-bonded rod coiled around an acryl reel. Note that the components in the dashed box are used only when the νB of the PMF is measured.

Fig. 3.
Fig. 3.

(a) Brillouin frequency distribution of the strain-applied PMF. (b) Optical spectrum showing the reflection by the BDG measured with the optical spectrum analyzer in Fig. 2.

Fig. 4.
Fig. 4.

(a) Time traces of the signal pulse at different Δν’s. (b) Time delay of the signal pulse with respect to Δν.

Fig. 5.
Fig. 5.

(a) Relation between Δν and local Brillouin frequency for maximizing the reflectance. (b) Reflectance as a function of time delay.

Fig. 6.
Fig. 6.

Width of the signal pulse normalized to the original one (82 ns) as a function of time delay.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δν=Δnn·ν

Metrics