Abstract

We perform ray and wave simulations of passive and active spiral-shaped optical microcavities, comparing our results to experimental data obtained with mid-infrared quantum cascade spiral microlasers. Focusing on the angular emission characteristics, we find that both ray and wave simulations are consistent with the experimental data, showing richly-featured, multidirectional far-field emission patterns in the case of uniform pumping and TM-polarized light. Active cavity simulations using the Schrödinger-Bloch model indicate that selective pumping of the quantum cascade spiral microlasers near the resonator boundary will yield unidirectional laser emission.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
    [CrossRef]
  2. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
    [CrossRef]
  3. T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
    [CrossRef]
  4. A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
    [CrossRef]
  5. A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
    [CrossRef]
  6. Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
    [CrossRef]
  7. M. Hentschel and T.-Y. Kwon, "Designing and understanding directional emission from spiral microlasers," Opt. Lett. 34, 163-165 (2009).
    [CrossRef] [PubMed]
  8. R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
    [CrossRef]
  9. A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
    [CrossRef]
  10. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
    [CrossRef] [PubMed]
  11. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
    [CrossRef]
  12. M. Hentschel and M. Vojta, "Multiple beam interference in a quadrupolar glass fiber," Opt. Lett. 26, 1764-1766 (2001).
    [CrossRef]
  13. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004).
    [CrossRef]
  14. S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007).
    [CrossRef]
  15. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
    [CrossRef] [PubMed]
  16. S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
    [CrossRef]
  17. M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
    [CrossRef]
  18. T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
    [CrossRef]
  19. J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008).
    [CrossRef] [PubMed]
  20. M. Hentschel and H. Schomerus, "Fresnel laws at curved dielectric interfaces of microresonators," Phys. Rev. E 65, 045603(R) (2002).
    [CrossRef]
  21. H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006).
    [CrossRef] [PubMed]
  22. S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
    [CrossRef]
  23. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, "Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators," Opt. Lett. 27, 824-826 (2002).
    [CrossRef]
  24. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
    [CrossRef]
  25. Note that they can be understood as normal scarred resonances in the framework of an amended ray optics where the Fresnel filtering and Goos-H¨anchen corrections are included, see E. G. Altmann, G. Del Magno, and M. Hentschel, "Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics," Europhys. Lett. 84, 10008 (2008).
    [CrossRef]
  26. S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.
  27. T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
    [CrossRef] [PubMed]
  28. The data is taken at a circle of radius R = 3r0 and corresponds, strictly speaking, to the mid-field characteristics. The far-field profiles can be expected to be very similar to the data shown.
  29. V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
    [CrossRef]
  30. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
    [CrossRef] [PubMed]
  31. N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheyer, Jr., "Single-mode low-loss chalcogenide glass waveguides for the mid-infrared," Opt. Lett. 31, 1860-1862 (2006).
    [CrossRef] [PubMed]
  32. N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
    [CrossRef]

2009 (1)

2008 (4)

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

Note that they can be understood as normal scarred resonances in the framework of an amended ray optics where the Fresnel filtering and Goos-H¨anchen corrections are included, see E. G. Altmann, G. Del Magno, and M. Hentschel, "Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics," Europhys. Lett. 84, 10008 (2008).
[CrossRef]

2007 (8)

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

2006 (5)

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheyer, Jr., "Single-mode low-loss chalcogenide glass waveguides for the mid-infrared," Opt. Lett. 31, 1860-1862 (2006).
[CrossRef] [PubMed]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
[CrossRef]

2004 (3)

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

2003 (2)

J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

2002 (1)

2001 (1)

An, K.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Audet, R.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Austin, D. A.

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Bahriz, M.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Baillargeon, J. N.

Belkin, M. A.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Ben-Messaoud, T.

Bogomolny, E.

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

Capasso, F.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, "Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators," Opt. Lett. 27, 824-826 (2002).
[CrossRef]

Chang, R. K.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Cho, A. Y.

Cho, J.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.

Choi, M.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Cockburn, J. W.

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Colombelli, R.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Douglas Stone, A.

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Fan, J. A.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Fujii, A.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Fukushima, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Gmachl, C.

Harayama, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007).
[CrossRef]

T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
[CrossRef]

Hentschel, M.

M. Hentschel and T.-Y. Kwon, "Designing and understanding directional emission from spiral microlasers," Opt. Lett. 34, 163-165 (2009).
[CrossRef] [PubMed]

J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006).
[CrossRef] [PubMed]

M. Hentschel and M. Vojta, "Multiple beam interference in a quadrupolar glass fiber," Opt. Lett. 26, 1764-1766 (2001).
[CrossRef]

M. Hentschel and H. Schomerus, "Fresnel laws at curved dielectric interfaces of microresonators," Phys. Rev. E 65, 045603(R) (2002).
[CrossRef]

Ikeda, K.

T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
[CrossRef]

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Kim, C.-M.

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

Kim, Ch.-M.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.

Kim, J. H.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Kim, S. W.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Krysa, A. B.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Kurdoglyan, M. S.

Kwon, T.-Y.

M. Hentschel and T.-Y. Kwon, "Designing and understanding directional emission from spiral microlasers," Opt. Lett. 34, 163-165 (2009).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.

Lauret, J. S.

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

Lebental, M.

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

Lee, B. G.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Lee, H.-W.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Lee, J.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Lee, J.-H.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Lee, S. H.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Lee, S.-B.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Lee, S.-Y.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

Lin, K.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Masuyama, K.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

Moon, S.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Moreau, V.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Nakao, T.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

Narimanov, E. E.

Nishimura, T.

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Oh, K. R.

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Ozaki, M.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Painter, O.

Palomo, J.

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Park, Y.-J.

Perahia, R.

Rex, N. B.

Rim, S.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

Roberts, J. S.

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Ryu, J.-W.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

Schmit, C.

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

Schomerus, H.

H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006).
[CrossRef] [PubMed]

M. Hentschel and H. Schomerus, "Fresnel laws at curved dielectric interfaces of microresonators," Phys. Rev. E 65, 045603(R) (2002).
[CrossRef]

Schwefel, H. G. L.

Shim, J.-B.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Shinohara, S.

S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007).
[CrossRef]

Sirtori, C.

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Stone, A. D.

Sunada, S.

T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
[CrossRef]

Takashima, T.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

Tanaka, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

Tsujimoto, N.

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

Tulek, A.

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Tureci, H. E.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

Vardeny, Z. V.

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Vojta, M.

Wiersig, J.

J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
[CrossRef]

Wilson, L. R.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

Yang, J.

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

Yoshida, Y.

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Yoshino, K.

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Zyss, J.

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003).
[CrossRef]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004).
[CrossRef]

T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005).
[CrossRef]

A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007).
[CrossRef]

Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Europhys. Lett. (1)

Note that they can be understood as normal scarred resonances in the framework of an amended ray optics where the Fresnel filtering and Goos-H¨anchen corrections are included, see E. G. Altmann, G. Del Magno, and M. Hentschel, "Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics," Europhys. Lett. 84, 10008 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006).
[CrossRef]

A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (3)

S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007).
[CrossRef]

M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007).
[CrossRef]

T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005).
[CrossRef]

Phys. Rev. E (1)

S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007).
[CrossRef]

Phys. Rev. E. (1)

S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.

Phys. Rev. Lett. (4)

H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006).
[CrossRef] [PubMed]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Other (3)

M. Hentschel and H. Schomerus, "Fresnel laws at curved dielectric interfaces of microresonators," Phys. Rev. E 65, 045603(R) (2002).
[CrossRef]

S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005).
[CrossRef]

The data is taken at a circle of radius R = 3r0 and corresponds, strictly speaking, to the mid-field characteristics. The far-field profiles can be expected to be very similar to the data shown.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Spiral microcavity (ε=0.1) with sample trajectory and (b) phase space portrait (red crosses). The blue diamond symbols mark a snapshot in the Poincaré SOS at the 4th bounce. See text for details.

Fig. 2.
Fig. 2.

Far-field profile measured for a quantum cascade spiral microlaser with (a) r 0=80mm and ε=0.125 and (b) r 0=110µm and ε=0.091. The lasers were operated above threshold in pulsed mode at room temperature. Zero angle is defined as perpendicular to the spiral notch as shown in (c).

Fig. 3.
Fig. 3.

Far-field patterns based on the ray picture for TM-polarized light and various geometries similar to those in Ref. [8]. The far-field angle θ is measured with respect to the notch (θ=0 meaning emission perpendicular to the notch surface, see inset). 105 rays are started with random initial conditions and data is taken from the steady probability distribution. Intensity is in arbitrary units.

Fig. 4.
Fig. 4.

Wave and far-field patterns (upper and lower panels, respectively) of four neighboring resonances of the passive cavity with comparable Q-factors around 4400 and wavenumbers near 1430 cm-1. The presence of the notch does not affect the emission patterns in any obvious way, and the radiation emerges in multiple directions that also depend on the resonance chosen. The existence of a number of emission directions on an appreciable background makes these far-field profiles qualitatively similar to those experimentally observed and ray-simulated.

Fig. 5.
Fig. 5.

Uniform (left panels) and boundary (right panels) pumping of spiral-shaped microlasers [Re(nkr 0)≈62,ε=0.2,n=3.15]. The area pumped is shown in the insets; in the case of selective pumping the boundary area pumped is at least 0.1r 0. The upper panels show snapshots of the intensity distribution in the lasing cavity. The internal mode dynamics often lead to a pulsed light output [7]. The lower panels show the far-field patterns (for the pumping strength w=0.0002, slightly above the lasing threshold) as a function of angle. The uniformly pumped device (left) has multidirectional laser emission, whereas the boundary-pumped device (right) has highly directional emission.

Metrics