Abstract

We demonstrate an all-fiber photon pair source for the critical telecom C-band. We achieve high pair generation rates in excess of 10 MHz while maintaining coincidence-to-accidental ratios (CARs) greater than 100. This is one of the brightest and lowest-noise photon pair sources ever demonstrated. We achieve the high pair rate through CW-pumped spontaneous four-wave mixing in dispersion-shifted fiber. We achieve the high CAR by cooling the fiber to 4 K to suppress the Raman generation and detecting the photons with low jitter and low dark count superconducting single-photon detectors.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [CrossRef] [PubMed]
  2. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  3. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
    [CrossRef] [PubMed]
  4. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13(22), 8951–8959 (2005).
    [CrossRef] [PubMed]
  5. F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
    [CrossRef]
  6. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]
  7. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
    [CrossRef]
  8. N. R. Newbury, and K. L. Corwin, “Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,” in Symp. Optical Fiber Measurements, G W. Day, D. L. Franzen, and P. A. Williams, eds., (NIST Special Publication 988, 2002), p. 7.
  9. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  10. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
[CrossRef] [PubMed]

2006 (2)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[CrossRef] [PubMed]

2005 (3)

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Altepeter, J. B.

Anant, V.

Baek, B.

Berggren, K. K.

Dauler, E. A.

Duligall, J.

Dyer, S. D.

Fulconis, J.

Gol’tsman, G. N.

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Hadfield, R. H.

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Jeffrey, E. R.

Kerman, A. J.

König, F.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Kumar, P.

Kwiat, P. G.

Lee, K. F.

Liang, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Lita, A. E.

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Medic, M.

Miller, A. J.

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Nam, S. W.

Rarity, J. G.

Rosfjord, K. M.

Russell, P. St. J.

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Stevens, M. J.

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Voronov, B. M.

Wadsworth, W. J.

Wang, F. N. C.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Yang, J. K. W.

Appl. Phys. Lett. (1)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Opt. Express (6)

Phys. Rev. A (2)

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Other (1)

N. R. Newbury, and K. L. Corwin, “Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,” in Symp. Optical Fiber Measurements, G W. Day, D. L. Franzen, and P. A. Williams, eds., (NIST Special Publication 988, 2002), p. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified diagram of the CW all-fiber photon pair source. DSF = dispersion shifted fiber, TIA = time interval analyzer, SSPD = superconducting nanowire single-photon detector.

Fig. 2
Fig. 2

System used to characterize the Raman gain by measuring the backscattered spectrum.

Fig. 3
Fig. 3

(a). Measured Raman gain spectra as a function of the detuning between the signal and pump frequencies. (b). Plot of the Raman photon generation rates (normalized to 1 mW of CW pump power), calculated from the measured Raman gain data of (a) for T = 300 K and T = 4 K. The anti-Stokes Raman at 4 K is not shown because it is too small to be plotted here.

Fig. 4
Fig. 4

(a). Plot of CAR versus pump power (left axis) and generated pair rate versus pump power (right axis). These are the photon pair rates generated within the 1 nm linewidth of the signal and idler filters. CAR data are shown from 4 repeated measurements. (b). Plot showing the tradeoff between high CAR and high pair rates.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ki+ks2kp+2γP0=0,
ωi+ωs2ωp=0,
Ipair,u(γP0L)2+|Hu(ω)|22πdω,
IR,uΔνuP0L|gR,u|Nu(Ωs),
N(Ωs)={φ(T,Ωs)       for ω>ωp,φ(T,Ωs)+1       for ω<ωp,
φ(T,Ωs)=[exp(|Ωs|kBT)1]1
Nacctinttwinrs(t)ri(t)=tinttwin[ηi(Ipair+IR,i)+rdark][ηs(Ipair+IR,s)+rdark],
CARcwηsηiIpairtintχNacc,
CARpulsedηsηiIpairDc/fr[ηs(IpairDc/fr+IR,sDc/fr)+rdark][ηi(IpairDc/fr+IR,iDc/fr)+rdark],
CARpulsedCARCWtwinDc/frtjittertpulse80ps8ps=10 ,

Metrics