Abstract

We demonstrate an all-fiber photon pair source for the critical telecom C-band. We achieve high pair generation rates in excess of 10 MHz while maintaining coincidence-to-accidental ratios (CARs) greater than 100. This is one of the brightest and lowest-noise photon pair sources ever demonstrated. We achieve the high pair rate through CW-pumped spontaneous four-wave mixing in dispersion-shifted fiber. We achieve the high CAR by cooling the fiber to 4 K to suppress the Raman generation and detecting the photons with low jitter and low dark count superconducting single-photon detectors.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [CrossRef] [PubMed]
  2. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  3. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
    [CrossRef] [PubMed]
  4. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13(22), 8951–8959 (2005).
    [CrossRef] [PubMed]
  5. F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
    [CrossRef]
  6. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]
  7. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
    [CrossRef]
  8. N. R. Newbury, and K. L. Corwin, “Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,” in Symp. Optical Fiber Measurements, G W. Day, D. L. Franzen, and P. A. Williams, eds., (NIST Special Publication 988, 2002), p. 7.
  9. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  10. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
    [CrossRef] [PubMed]

2008

2007

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
[CrossRef] [PubMed]

2006

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006).
[CrossRef] [PubMed]

2005

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Altepeter, J. B.

Anant, V.

Baek, B.

Berggren, K. K.

Dauler, E. A.

Duligall, J.

Dyer, S. D.

Fulconis, J.

Gol’tsman, G. N.

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Hadfield, R. H.

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15(3), 1322–1327 (2007).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Jeffrey, E. R.

Kerman, A. J.

König, F.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Kumar, P.

Kwiat, P. G.

Lee, K. F.

Liang, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Lita, A. E.

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Medic, M.

Miller, A. J.

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Nam, S. W.

Rarity, J. G.

Rosfjord, K. M.

Russell, P. St. J.

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Stevens, M. J.

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Voronov, B. M.

Wadsworth, W. J.

Wang, F. N. C.

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Yang, J. K. W.

Appl. Phys. Lett.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[CrossRef]

Opt. Express

Phys. Rev. A

F. König, E. J. Mason, F. N. C. Wang, and M. A. Albota, “Efficient and spectrally bright source of polarization-entangled photons,” Phys. Rev. A 71(3), 033805 (2005).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Other

N. R. Newbury, and K. L. Corwin, “Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,” in Symp. Optical Fiber Measurements, G W. Day, D. L. Franzen, and P. A. Williams, eds., (NIST Special Publication 988, 2002), p. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified diagram of the CW all-fiber photon pair source. DSF = dispersion shifted fiber, TIA = time interval analyzer, SSPD = superconducting nanowire single-photon detector.

Fig. 2
Fig. 2

System used to characterize the Raman gain by measuring the backscattered spectrum.

Fig. 3
Fig. 3

(a). Measured Raman gain spectra as a function of the detuning between the signal and pump frequencies. (b). Plot of the Raman photon generation rates (normalized to 1 mW of CW pump power), calculated from the measured Raman gain data of (a) for T = 300 K and T = 4 K. The anti-Stokes Raman at 4 K is not shown because it is too small to be plotted here.

Fig. 4
Fig. 4

(a). Plot of CAR versus pump power (left axis) and generated pair rate versus pump power (right axis). These are the photon pair rates generated within the 1 nm linewidth of the signal and idler filters. CAR data are shown from 4 repeated measurements. (b). Plot showing the tradeoff between high CAR and high pair rates.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ki+ks2kp+2γP0=0,
ωi+ωs2ωp=0,
Ipair,u(γP0L)2+|Hu(ω)|22πdω,
IR,uΔνuP0L|gR,u|Nu(Ωs),
N(Ωs)={φ(T,Ωs)       for ω>ωp,φ(T,Ωs)+1       for ω<ωp,
φ(T,Ωs)=[exp(|Ωs|kBT)1]1
Nacctinttwinrs(t)ri(t)=tinttwin[ηi(Ipair+IR,i)+rdark][ηs(Ipair+IR,s)+rdark],
CARcwηsηiIpairtintχNacc,
CARpulsedηsηiIpairDc/fr[ηs(IpairDc/fr+IR,sDc/fr)+rdark][ηi(IpairDc/fr+IR,iDc/fr)+rdark],
CARpulsedCARCWtwinDc/frtjittertpulse80ps8ps=10 ,

Metrics