Abstract

We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
    [CrossRef]
  2. U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, and R. Niessner, “Remote analysis of a mineral melt by Laser-Induced Plasma Spectroscopy,” Appl. Spectrosc. 56(3), 375–380 (2002).
    [CrossRef]
  3. A. I. Whitehouse, “Laser-induced breakdown spectroscopy and its application to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).
  4. R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning,” Opt. Lett. 30(21), 2882–2884 (2005).
    [CrossRef] [PubMed]
  5. B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
    [CrossRef]
  6. J. J. Laserna, in First International Conference on Laser Induced Breakdown Spectroscopy and Applications (LIBS 2000), (personal communication, 2000).
  7. S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
    [CrossRef]
  8. J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
    [PubMed]
  9. R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60(8), 853–859 (2006).
    [CrossRef] [PubMed]
  10. S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
    [CrossRef]
  11. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media 2nd Ed (SPIE Press, Bellingham, 2005).
  12. A. Zilberman, N. S. Kopeida, and Y. Sorani, Laser beam widening as a function of elevation in the atmosphere for horizontal propagation, Proc. SPIE Laser Weapons Technology II, vol. 4376, 2001.
  13. E. Friedman, and J. L. Miller, Photonics Rules of Thumb 2nd. Ed. (McGraw-Hill New York, 2004), pp. 176.
  14. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochimica Acta Part B 63(2), 305–311 (2008).
    [CrossRef]

2008 (1)

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochimica Acta Part B 63(2), 305–311 (2008).
[CrossRef]

2007 (1)

B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
[CrossRef]

2006 (3)

A. I. Whitehouse, “Laser-induced breakdown spectroscopy and its application to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
[CrossRef]

R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60(8), 853–859 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
[CrossRef]

2003 (1)

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

2002 (2)

S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
[CrossRef]

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, and R. Niessner, “Remote analysis of a mineral melt by Laser-Induced Plasma Spectroscopy,” Appl. Spectrosc. 56(3), 375–380 (2002).
[CrossRef]

Baena, J. M.

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
[CrossRef]

Conesa, S.

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
[CrossRef]

Ferrero, A.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochimica Acta Part B 63(2), 305–311 (2008).
[CrossRef]

Fink, H.

García, P. L.

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

Grönlund, R.

Haisch, C.

Laserna, J. J.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochimica Acta Part B 63(2), 305–311 (2008).
[CrossRef]

S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
[CrossRef]

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
[CrossRef]

Lopez Moreno, C.

S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
[CrossRef]

Lundqvist, M.

Mauchien, P.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
[CrossRef]

Maurice, S.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
[CrossRef]

Neuhauser, R. E.

Niessner, R.

Palanco, S.

S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
[CrossRef]

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
[CrossRef]

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
[CrossRef]

Panne, U.

Romero, D.

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

Sallé, B.

B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
[CrossRef]

Svanberg, S.

Vadillo, J. M.

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

Whitehouse, A. I.

A. I. Whitehouse, “Laser-induced breakdown spectroscopy and its application to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Anal. Bioanal. Chem. (1)

J. M. Vadillo, P. L. García, S. Palanco, D. Romero, J. M. Baena, and J. J. Laserna, “Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry,” Anal. Bioanal. Chem. 375(8), 1144–1147 (2003).
[PubMed]

Appl. Spectrosc. (2)

J. Anal. At. Spectrom. (1)

S. Palanco, S. Conesa, and J. J. Laserna, “Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer,” J. Anal. At. Spectrom. 19(4), 462–467 (2004).
[CrossRef]

Opt. Lett. (1)

Spectrochim. Acta, B At. Spectrosc. (3)

S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta, B At. Spectrosc. 57(3), 591–599 (2002).
[CrossRef]

B. Sallé, P. Mauchien, and S. Maurice, “Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects,” Spectrochim. Acta, B At. Spectrosc. 62(8), 739–768 (2007).
[CrossRef]

S. Palanco, C. Lopez Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta, B At. Spectrosc. 61(1), 88–95 (2006).
[CrossRef]

Spectrochimica Acta Part B (1)

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochimica Acta Part B 63(2), 305–311 (2008).
[CrossRef]

Spectroscopy Europe (1)

A. I. Whitehouse, “Laser-induced breakdown spectroscopy and its application to the remote characterization of hazardous materials,” Spectroscopy Europe 18, 14–21 (2006).

Other (4)

J. J. Laserna, in First International Conference on Laser Induced Breakdown Spectroscopy and Applications (LIBS 2000), (personal communication, 2000).

L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media 2nd Ed (SPIE Press, Bellingham, 2005).

A. Zilberman, N. S. Kopeida, and Y. Sorani, Laser beam widening as a function of elevation in the atmosphere for horizontal propagation, Proc. SPIE Laser Weapons Technology II, vol. 4376, 2001.

E. Friedman, and J. L. Miller, Photonics Rules of Thumb 2nd. Ed. (McGraw-Hill New York, 2004), pp. 176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Picture of the TELELIBS instrument.

Fig. 2
Fig. 2

Optical layout of the TELELIBS instrument. (1). Diverging lens, (2). Converging lens, (3). Dichroic mirror, (4). Primary mirror, (5). Secondary mirror, (6). Flip mirror, (7). Folding mirror, (8). Optical fiber, (9). CCD.

Fig. 3
Fig. 3

(a) Colimated near field intensity beam cross section. (b) Focused intensity beam cross section after propagating 50 m at a height of 1.5 m above the ground.

Fig. 4
Fig. 4

Inprints left on an aluminium target at 120 m after (a) 1 shot, (b) 20 shots, (c) 100 shots and (d) 1000 shots.

Fig. 5
Fig. 5

Displacement of the laser beam centroid along the horizontal axis. The fitting curves mean the zero-mean Gaussian distribution of the deviations as measured at distances of 30 m and 50 m.

Fig. 6
Fig. 6

Displacement of the plasma image position along the x axis in the telescope focal plane acquired with a beam analyzer. The fitted curves are the zero-mean Gaussian distributions of the deviations.

Fig. 7
Fig. 7

Two single shot LIBS spectra of Al obtained outdoor at 120 m from the instrument Spectra were arbitrarily chosen from a series of 1000 shots intended to hit a single position on the Al plate.

Fig. 8
Fig. 8

Shot-to-shot fluctuation of line intensity from an aluminum target located at 120 m from the instrument (1000 shots). Lines monitored are Al at 394.4 nm and Ca at 393.4 nm.

Fig. 9
Fig. 9

Variation of the intensity of Al 394.4 nm and Ca 393.4 nm emission lines with the number of laser pulses at 50 m. a) outdoor and b) indoor.

Tables (1)

Tables Icon

Table 1 Statistical parameters associated to LIBS measurements on an aluminum target located outdoor at variable ranges

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sW=(2.72Cnr3W0−1/3)0.5
sI=(1.24Cn2k7/6r11/6)0.5  

Metrics