Abstract

Optical tweezers are a powerful tool for micromanipulation and measurement of picoNewton sized forces. However, conventional interfaces present difficulties as the user cannot feel the forces involved. We present an interface to optical tweezers, based around a low-cost commercial force feedback device. The different dynamics of the micro-world make intuitive force feedback a challenge. We propose a coupling method using an existing optical tweezers system and discuss stability and transparency. Our system allows the user to perceive real Brownian motion and viscosity, as well as forces exerted during manipulation of objects by a trapped bead.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. G. Whyte, G. Gibson, J. Leach, and M. Padgett, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006).
    [CrossRef] [PubMed]
  3. J. Grieve, A. Ulcinas, S. Subramanian, G. Gibson, M. Padgett, D. Carberry, and M. Miles "Hands-on with optical tweezers: a multitouch interface for holographic optical trapping," Opt. Express 17, 3595-3602 (2009).
    [CrossRef] [PubMed]
  4. E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
    [CrossRef]
  5. C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Do˘ganay, "Haptic guidance for improved task performance in steering microparticles with optical tweezers," Opt. Express 15, 11616-11621 (2007).
    [CrossRef] [PubMed]
  6. I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
    [CrossRef]
  7. F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).
  8. G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14561-14570 (2008).
    [CrossRef] [PubMed]
  9. A. Berthoz, The Brain’s Sense of Movement (Harvard University Press, 2000).
  10. L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
    [CrossRef]
  11. A. Bolopion, B. Cagneau, D. S. Haliyo, and S. Regnier, "Analysis of stability and transparency for nano force feedback in bilateral coupling," J. Micro-Nano Mech. 10.1007/s12213-009-0016-3 (2009).
  12. S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007).
    [CrossRef]
  13. M. Goldfarb, "Dimensional Analysis and Selective Distortion in Scaled Bilateral Telemanipulation," Proc. IEEE 2, 1609-1614 (1998).

2009 (2)

J. Grieve, A. Ulcinas, S. Subramanian, G. Gibson, M. Padgett, D. Carberry, and M. Miles "Hands-on with optical tweezers: a multitouch interface for holographic optical trapping," Opt. Express 17, 3595-3602 (2009).
[CrossRef] [PubMed]

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

2008 (2)

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14561-14570 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
[CrossRef]

C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Do˘ganay, "Haptic guidance for improved task performance in steering microparticles with optical tweezers," Opt. Express 15, 11616-11621 (2007).
[CrossRef] [PubMed]

2006 (1)

2000 (1)

F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).

1998 (1)

M. Goldfarb, "Dimensional Analysis and Selective Distortion in Scaled Bilateral Telemanipulation," Proc. IEEE 2, 1609-1614 (1998).

1986 (1)

Arai, F.

F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).

Ashkin, A.

Basdogan, C.

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Do˘ganay, "Haptic guidance for improved task performance in steering microparticles with optical tweezers," Opt. Express 15, 11616-11621 (2007).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bukusoglu, I.

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Do˘ganay, "Haptic guidance for improved task performance in steering microparticles with optical tweezers," Opt. Express 15, 11616-11621 (2007).
[CrossRef] [PubMed]

Carberry, D.

J. Grieve, A. Ulcinas, S. Subramanian, G. Gibson, M. Padgett, D. Carberry, and M. Miles "Hands-on with optical tweezers: a multitouch interface for holographic optical trapping," Opt. Express 17, 3595-3602 (2009).
[CrossRef] [PubMed]

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

Chu, S.

Do?ganay, S.

Dziedzic, J. M.

Fukuda, T.

F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).

Gibson, G.

Goldfarb, M.

M. Goldfarb, "Dimensional Analysis and Selective Distortion in Scaled Bilateral Telemanipulation," Proc. IEEE 2, 1609-1614 (1998).

Grieve, J.

Higuchi, T.

E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
[CrossRef]

Ikin, L.

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

Keen, S.

G. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14561-14570 (2008).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

Kiraz, A.

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Do˘ganay, "Haptic guidance for improved task performance in steering microparticles with optical tweezers," Opt. Express 15, 11616-11621 (2007).
[CrossRef] [PubMed]

Kurt, A.

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

Leach, J.

Miles, M.

J. Grieve, A. Ulcinas, S. Subramanian, G. Gibson, M. Padgett, D. Carberry, and M. Miles "Hands-on with optical tweezers: a multitouch interface for holographic optical trapping," Opt. Express 17, 3595-3602 (2009).
[CrossRef] [PubMed]

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

Ogawa, M.

F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).

Padgett, M.

J. Grieve, A. Ulcinas, S. Subramanian, G. Gibson, M. Padgett, D. Carberry, and M. Miles "Hands-on with optical tweezers: a multitouch interface for holographic optical trapping," Opt. Express 17, 3595-3602 (2009).
[CrossRef] [PubMed]

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

G. Whyte, G. Gibson, J. Leach, and M. Padgett, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12497-12502 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

Subramanian, S.

Ulcinas, A.

van West, E.

E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
[CrossRef]

Varol, A.

Whyte, G.

Wright, A. J.

Yamamoto, A.

E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Keen, J. Leach, G. Gibson, and M. Padgett, "Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers," J. Opt. A: Pure Appl. Opt. 9, S264-S266 (2007).
[CrossRef]

Mechatronics (1)

E. van West, A. Yamamoto, and T. Higuchi, "The concept of "Haptic Tweezer", a non-contact object handling system using levitation techniques and haptics," Mechatronics 17, 345-356 (2007).
[CrossRef]

New J. Phys. (1)

L. Ikin, D. Carberry, G. Gibson, M. Padgett, and M. Miles, "Assembly and force measurement with SPM-like probes in holographic optical tweezers," New J. Phys. 11, 023012 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Presence (1)

I. Bukusoglu, C. Basdogan, A. Kiraz, and A. Kurt, "Haptic Manipulation of Microspheres Using Optical Tweezers Under the Guidance of Artificial Force Fields," Presence 17, 344-364 (2008).
[CrossRef]

Proc. IEEE (2)

F. Arai, M. Ogawa, and T. Fukuda, "Indirect Manipulation and Bilateral Control of the Microbe by the Laser Manipulated Microtools," Proc. IEEE 1, 665-670 (2000).

M. Goldfarb, "Dimensional Analysis and Selective Distortion in Scaled Bilateral Telemanipulation," Proc. IEEE 2, 1609-1614 (1998).

Other (2)

A. Bolopion, B. Cagneau, D. S. Haliyo, and S. Regnier, "Analysis of stability and transparency for nano force feedback in bilateral coupling," J. Micro-Nano Mech. 10.1007/s12213-009-0016-3 (2009).

A. Berthoz, The Brain’s Sense of Movement (Harvard University Press, 2000).

Supplementary Material (2)

» Media 1: MPG (1582 KB)     
» Media 2: MPG (1982 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scaling factors between the microworld and the macroworld (filled arrows), and the distortion of dynamic parameters which follows by dimensional analysis (hollow arrows).

Fig. 2.
Fig. 2.

(a) Schematic of our system, using direct bilateral coupling. D user and D micro are respectively the displacement of the user’s hand and the position set point of the laser. D bead-D trap is the deviation of the bead from the trap centre and V micro is the mirror speed command. F micro and F user are the estimated forces exerted on the object by the environment and the force feedback to the user. (b) Response of the system to a motion of the controller at a constant speed. Our mirror lags behind the desired trajectory by 200ms, and for a 5µm bead, the delay behind the trap is 50ms. The two force curves match exactly, showing good transparency in force. Microworld quantities have been scaled to macroworld units.

Fig. 3.
Fig. 3.

The tweezers system is based around an inverted microscope. The laser beam is steered by a computer-controlled mirror, providing one trap with a power of approximately 30mW. Camera 1 images a 60µm wide area of the sample, while camera 2 takes high-speed images centered on the optical trap for particle tracking and force measurement.

Fig. 4.
Fig. 4.

(a) A bead is pushed along the edge of a silicon cube, maintaining contact as it moves. The force acting on the bead is shown as arrows, at 130ms intervals (Media 1). (b) Histogram showing the force applied to a wall as the bead was moved along it, trying to maintain a constant force. The path followed (line) and force on the bead (arrows) are shown in the insert. (c) Frames from a video sequence showing a 5µmsilica bead “docking” with a crack in a piece of chrome (Media 2).

Metrics