Abstract

Doping-tunable mid-infrared extraordinary transmission is demonstrated from a periodic metal hole array patterned on n-InSb. The polarization-dependent transmission was measured at room temperature and 77 K. In addition, the extraordinary transmission was measured for incident angles from 0° to 35° in 5° steps. A fundamental resonance shift of ~ 123 cm-1 (1.4 μm) is observed by varying the doping from 1 x 1016 to 2 x 1018 cm-3. The calculated transmission resonances were in good agreement with the experimental results. This suggests that InSb semiconductor-based plasmonic structures may be suitable for a variety of tunable mid-infrared device applications.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
    [CrossRef]
  3. K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
    [CrossRef]
  4. R. Ulrich, "Modes of propagation on an open periodic waveguide for the far infrared," in Proceedings Symp. Opt. Acoust. Microelectron., (Polytechnic Press of the Polytechnic Institute of New York. New York, 1974), pp. 359-376.
  5. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
    [CrossRef]
  6. N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
    [CrossRef]
  7. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
  8. N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
    [CrossRef]
  10. N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).
  11. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
    [CrossRef]
  12. G. C. Schatz, M. Young, and R. P. V. Duyne, "Electromagnetic mechanism of SERS,"in Surface Enhanced Raman Scattering: Physics and Applications, Springer Topics in Applied Physics, K. Kneipp, M. Moskovits, H. Kneipp, ed., (Springer, New York, 2006)
  13. P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
    [CrossRef]
  14. J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
    [CrossRef]
  15. Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004).
    [CrossRef]
  16. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).
  17. S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
    [CrossRef]
  18. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
    [CrossRef]
  19. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005)
    [CrossRef]
  20. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
    [CrossRef]
  21. P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008).
    [CrossRef]
  22. D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
    [CrossRef]
  23. O. Manasreh, Semiconductor heterojunctions and nanostructures, K. P. McCombs eds., (McGraw-Hill, New York, 2005).
  24. E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
    [CrossRef]
  25. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  26. W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).
  27. T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss Mechanisms in mid-indfrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
    [CrossRef]
  28. Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
    [CrossRef]
  29. C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
    [CrossRef]
  30. A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003).
    [CrossRef]
  31. C. Kittel, Introduction to Solid State Physics, S. Johnson, ed., (J. Wiley & Sons Inc., New York 1986).
  32. W. Zawadski, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974).
    [CrossRef]
  33. E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
    [CrossRef]
  34. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
    [CrossRef]
  35. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef]

2009 (1)

2008 (4)

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008).
[CrossRef]

2007 (5)

D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
[CrossRef]

E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
[CrossRef]

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

2005 (2)

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005)
[CrossRef]

2004 (6)

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

2003 (5)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

1999 (2)

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

1983 (1)

N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).

1981 (1)

E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
[CrossRef]

1974 (1)

W. Zawadski, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974).
[CrossRef]

Apalkov, V.

P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008).
[CrossRef]

Astilean, S.

W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).

Atwater, H. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005)
[CrossRef]

Bailey, W. A.

Bao, Y. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Bardou, N.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Barnes, W. L.

W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef]

Baumann, F.

Billaudeau, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Bishop, S. R.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Campion, A.

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

Cederberg, J. G.

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss Mechanisms in mid-indfrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
[CrossRef]

E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
[CrossRef]

D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
[CrossRef]

Celli, V.

N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).

Chang, S. H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Chen, Y.

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

Child, C. M.

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

Cilwa, K.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

Coe, J.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

Coe, J. V.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

Collin, S.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Farmer, K. R.

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Foster, M. C.

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

Freitas, K.

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Glass, N. E.

N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).

Goodhue, W. D.

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

Heer, J.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

Hewageegana, P.

P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008).
[CrossRef]

Ivanov, D. V. P.

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Kambhampati, P.

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

Karakashian, A. S.

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

Lezec, H. J.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Litwin-Staszewska, E.

E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef]

Liu, S.

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

Liu, Z.

Lu, W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Lu, X.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005)
[CrossRef]

Maradudin, A. A.

N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).

Ming, N. B.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Moller, K. D.

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Murray, W. A.

W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

Naweed, A.

Pardo, F.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Passmore, B.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Pelouard, J. L.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Peng, R. W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Piotrzkowski, P.

E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
[CrossRef]

Ribaudo, T.

Rodriguez, K. R.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

Rogers, T. M.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Sauvan, C.

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Shah, S.

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

Shaner, E. A.

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss Mechanisms in mid-indfrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
[CrossRef]

E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
[CrossRef]

D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
[CrossRef]

Shao, J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Shu, D. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Stafford, A. D.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

Sternberg, O.

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Stewart, K. P.

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

Szymanska, W.

E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
[CrossRef]

Teeters-Kennedy, S.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

Thio, T.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Tian, H.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Wang, M.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

Wang, Y.

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

Wasserman, D.

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss Mechanisms in mid-indfrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009).
[CrossRef]

E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
[CrossRef]

D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Williams, S. M.

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Ye, Y. H.

Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004).
[CrossRef]

Yen, T. J.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Zawadski, W.

W. Zawadski, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974).
[CrossRef]

Zhang, J. Y.

Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004).
[CrossRef]

Zhang, X

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

Zhang, X.

N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Zhang, Y.

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

Adv. Phys. (1)

W. Zawadski, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974).
[CrossRef]

App. Phys. Lett. (1)

D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007).
[CrossRef]

C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004).
[CrossRef]

Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004).
[CrossRef]

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004).
[CrossRef]

Infrared Phys. Technol. (1)

K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005)
[CrossRef]

J. Chem. Phys. (3)

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).

P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998).
[CrossRef]

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef]

J. Chem. Phys. B (1)

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003).
[CrossRef]

J. Chem. Phys. C (1)

J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004).

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983).

Phys. Rev. Lett. (2)

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004).
[CrossRef]

Phys. Status Solidi b (1)

E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981).
[CrossRef]

Physica E (1)

P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007).
[CrossRef]

Other (4)

R. Ulrich, "Modes of propagation on an open periodic waveguide for the far infrared," in Proceedings Symp. Opt. Acoust. Microelectron., (Polytechnic Press of the Polytechnic Institute of New York. New York, 1974), pp. 359-376.

G. C. Schatz, M. Young, and R. P. V. Duyne, "Electromagnetic mechanism of SERS,"in Surface Enhanced Raman Scattering: Physics and Applications, Springer Topics in Applied Physics, K. Kneipp, M. Moskovits, H. Kneipp, ed., (Springer, New York, 2006)

O. Manasreh, Semiconductor heterojunctions and nanostructures, K. P. McCombs eds., (McGraw-Hill, New York, 2005).

C. Kittel, Introduction to Solid State Physics, S. Johnson, ed., (J. Wiley & Sons Inc., New York 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics