Abstract

Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003).
  2. M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (The University of New South Wales, Sydney, 1998).
  3. J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
    [CrossRef]
  4. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
    [CrossRef] [PubMed]
  5. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
    [CrossRef]
  6. A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
    [CrossRef]
  7. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
    [CrossRef]
  8. S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
    [CrossRef]
  9. H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998).
    [CrossRef]
  10. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  11. D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
    [CrossRef]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  13. M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, "Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters," Opt. Express 16, 15754-15758 (2008).
    [CrossRef] [PubMed]
  14. B. J. Soller and D. G. Hall, "Scattering enhancement from an array of interacting dipoles near a planar waveguide," J. Opt. Soc. Am. B 19, 2437-2448 (2002).
    [CrossRef]
  15. K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006).
    [CrossRef]
  16. N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999).
    [CrossRef]
  17. Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
    [CrossRef]
  18. B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
    [CrossRef]
  19. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000).
    [CrossRef] [PubMed]
  20. W. B. Ewe, H. S. Chu, and E. P. Li, "Volume integral equation analysis of surface plasmon resonance of nanoparticles," Opt. Express 15, 18200-18208 (2007).
    [CrossRef] [PubMed]
  21. K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  22. C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
    [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1998).
    [CrossRef]
  24. Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
    [CrossRef]
  25. Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
    [CrossRef]
  26. K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
    [CrossRef]

2009 (1)

Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

2008 (8)

M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, "Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters," Opt. Express 16, 15754-15758 (2008).
[CrossRef] [PubMed]

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
[CrossRef] [PubMed]

K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

2007 (3)

W. B. Ewe, H. S. Chu, and E. P. Li, "Volume integral equation analysis of surface plasmon resonance of nanoparticles," Opt. Express 15, 18200-18208 (2007).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

2006 (3)

K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (1)

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

2003 (1)

Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
[CrossRef]

2002 (1)

2000 (2)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000).
[CrossRef] [PubMed]

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

1999 (1)

N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999).
[CrossRef]

1998 (1)

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

Akimov, Yu. A.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
[CrossRef]

Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
[CrossRef]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Azarenkov, N. A.

Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
[CrossRef]

Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
[CrossRef]

N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999).
[CrossRef]

Catchpole, K. P.

K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

Chan, D. S. H.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Chan, W. H.

Chang, W. H.

Chong, T. C.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Chu, H. S.

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Ewe, W. B.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Hall, D. G.

B. J. Soller and D. G. Hall, "Scattering enhancement from an array of interacting dipoles near a planar waveguide," J. Opt. Soc. Am. B 19, 2437-2448 (2002).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

Hong, M. H.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Jiang, C. Y.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Kang, E. T.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Kottmann, J. P.

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Lagemaatb, J. v. d.

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Li, E. P.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

W. B. Ewe, H. S. Chu, and E. P. Li, "Volume integral equation analysis of surface plasmon resonance of nanoparticles," Opt. Express 15, 18200-18208 (2007).
[CrossRef] [PubMed]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Lin, C. A.

Ling, Q. D.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Liu, G.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Liu, Y. K.

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Lüth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

M¨uller, J.

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Martin, O. J. F.

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Olefir, V. P.

Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
[CrossRef]

Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
[CrossRef]

Ostrikov, K.

Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Ostrikov, N. K.

N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999).
[CrossRef]

Parak, W. J.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

Polman, A.

K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
[CrossRef] [PubMed]

Rech, B.

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schultz, S.

Shen, J. L.

Shi, L. P.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Smith, D. R.

Soller, B. J.

Springer, J.

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Tong, S. W.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Tribelsky, M. I.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Vanecek, M.

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

Wang, H. H.

Wang, Z. B.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Wu, C. H.

Yang, M. D.

Yeh, H. I.

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Zhang, C. F.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Zhou, Y.

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Zhu, C.

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Appl. Phys. A (1)

B. S. Luk’yanchuk, M. I. Tribelsky, Z. B. Wang, Y. Zhou, M. H. Hong, L. P. Shi, and T. C. Chong, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A 89, 259-264 (2007).
[CrossRef]

Appl. Phys. Lett. (8)

A. J. Morfa, K. L. Rowlen, T. H. ReillyIII, M. J. Romero, and J. v. d. Lagemaatb, "Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics," Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815 (1998).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

K. P. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, and C. Zhu, "Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer," Chem. Phys. Lett. 453, 73-76 (2008).
[CrossRef]

Contr. Plasma Phys. (1)

Yu. A. Akimov, V. P. Olefir, and N. A. Azarenkov, "Influence of azimuth structure of surface waves on efficiency of their excitation by tubular electron beams," Contr. Plasma Phys. 46, 817-825 (2006).
[CrossRef]

J. Appl. Phys. (2)

K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Phys. Rep. (1)

N. A. Azarenkov and N. K. Ostrikov, "Surface magnetoplasma waves at the interface between a plasma-like medium and a metal in a Voigt geometry," Phys. Rep. 308, 333-428 (1999).
[CrossRef]

Phys. Scr. (1)

Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, "Non-symmetric surface waves in cylindrical waveguide structures with radially non-uniform plasma filling," Phys. Scr. 67, 329-336 (2003).
[CrossRef]

Plasmonics (1)

Yu. A. Akimov, K. Ostrikov, and E. P. Li, "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Sol. Energy (1)

J. M¨uller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Sol. Energy 77, 917-930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, "Metal cluster enhanced organic solar cells," Sol. Energy Mater. Sol. Cells 61, 97-105 (2000).
[CrossRef]

Other (3)

M. A. Green, Third Generation Photovoltaics (Springer, Berlin, 2003).

M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (The University of New South Wales, Sydney, 1998).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Frequencies of the surface plasmon resonances in both scattering and absorption spectra for single spherical silver nanoparticles with radius R. The dashed curve shows the region where there is no resonant absorption on the dipolar mode.

Fig. 2.
Fig. 2.

Absorption and scattering cross-sections as a function of the radius R of a single silver nanoparticle for the n=1, 2, 3 surface plasmon modes, corresponding to the resonant frequencies in Fig. 1.

Fig. 3.
Fig. 3.

Sketch of a thin-film a-Si:H solar cell structure with an array of Ag nanoparticles on top of an ITO layer.

Fig. 4.
Fig. 4.

Spectral absorption rate of the a-Si:H photo-active layer (solid lines) and silver nanoparticles with R=20 nm (dashed lines) as a function of frequency ω[eV]. The shadow depicts position of the n=1 surface plasmon resonance.

Fig. 5.
Fig. 5.

Spectral absorption rate of the a-Si:H photo-active layer (solid lines) and silver nanoparticles with R=90 nm (dashed lines) as a function of frequency ω[eV]. The shadow regions correspond to the n=1, 2, 3 surface plasmon resonances.

Fig. 6.
Fig. 6.

Surface coverage η dependence of the plasmon enhancement F by silver nanoparticles.

Fig. 7.
Fig. 7.

Dependence of the surface coverage η max when the maximum enhancement of the a-Si:H optical absorption is obtained for silver nanoparticles with radius R.

Fig. 8.
Fig. 8.

Size-dependence of the maximum achievable enhancement F max by silver nanoparticles with radius R.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σsca=n=1σsca(n),σabs=n=1σabs(n),
F(R,η)=Ptot(R,η)Ptot(R,0)1,

Metrics