Abstract

Here we investigate plasmon polaritons in fluorine doped tin oxide (FTO) films. By fitting reflectance and transmittance measurements as a function of wavelength λ ∊ [1.0µm,2.5µm] we derive a Drude dispersion relation of the free electrons in the transparent conducting oxide films. Then we compute the dispersion curves for the bulk and surface modes together with a reflectance map over an extended wavelength region (λ ⇑ 10µm). Although the surface polariton dispersion for a single FTO/air interface when neglecting damping should appear clearly in the plots in the considered region (since it is supposedly far and isolated from other resonances), a complex behaviour can arise. This is due to different characteristic parameters, such as the presence of a finite extinction coefficient, causing an enlargement and backbending of the feature, and the low film thickness, via coupling between the modes from both the glass/FTO and FTO/air interfaces. Taking into account these effects, computations reveal a general behaviour for thin and absorbing conducting films. They predict a thickness dependent transition region between the bulk polariton and the surface plasmon branches as previously reported for indium tin oxide. Finally, attenuated total reflection measurements vs the incidence angle are performed over single wavelengths lines R(θ) (λ=0.633,0.830,1.300,1.550µm) and over a two dimensional domain R(θ,λ) in the near infrared region λ ∊ [1.45µm,1.59µm]. Both of these functions exhibit a feature which is attributed to a bulk polariton and not to a surface plasmon polariton on the basis of comparison with spectrophotometer measurements and modeling. The predicted range for the emergence of a surface plasmon polariton is found to be above λ≥2.1µm, while the optimal film thickness for its observation is estimated to be around 200nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, Amsterdam, 1982).
  2. A. D. Boardman, ed., Electromagnetic Surface Modes (Springer, Berlin, 1982).
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  4. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901 1-4 (2007).
    [CrossRef]
  5. J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
    [CrossRef] [PubMed]
  6. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004).
    [CrossRef]
  7. L. Tutt and J. F. Revelli, "Distribution of radiation from organic light-emitting diode structures with wavelengthscale gratings as a function of azimuth and polar angles," Opt. Lett. 33, 503-505 (2008).
    [CrossRef] [PubMed]
  8. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, "Surface plasmon coupled electroluminescent emission," Appl. Phys. Lett. 92, 103304 1-3 (2008).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
    [CrossRef] [PubMed]
  10. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, "Surface plasmon increase absorption in polymer photovoltaic cells," Appl. Phys. Lett. 91, 113514 1-3 (2007).
    [CrossRef]
  11. C. Hagglund, M. Zach, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 1-3 (2008).
    [CrossRef]
  12. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
    [CrossRef]
  13. V. N. Konopsky and E. V. Alieva, "Long-range plasmons in lossy metal films on photonic crystal surfaces," Opt. Lett. 34, 479-481 (2009).
    [CrossRef] [PubMed]
  14. B. E. Sernelius, Surface Modes in Physics (Wiley VCH, Weinheim, 2001).
    [CrossRef]
  15. J. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006).
    [CrossRef] [PubMed]
  16. A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas, "Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface," J. Opt. Soc. Am. B 25, 1016-1024 (2008).
    [CrossRef]
  17. <jrn>. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, "Tamm plasmon polaritons: Slow and spatially compact light," Appl. Phys. Lett. 92, 251112 1-3 (2008).</jrn>
    [CrossRef]
  18. F. Tao, Hu.-F. Zhang, X.-Hu. Yang, and D. Cao, "Surface plasmon polaritons of the metamaterial four-layered structures," J. Opt. Soc. Am. B 26, (1) 50-59 (2009).
    [CrossRef]
  19. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
    [CrossRef] [PubMed]
  20. M. Y. C. Xu, M. Z. Alam, A. J. Zilkie, K. Zeaiter, and J. S. Aitchison, "Surface plasmon polaritons mediated by ITO at near infrared wavelength," CLEO/QELS 2008 Conference Digest, JThA132 (2008).
  21. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
    [CrossRef]
  22. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm," Opt. Lett. 34, 839-841 (2009).
    [CrossRef] [PubMed]
  23. R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
    [CrossRef]
  24. M. Sarrazin and J.-P. Vigneron, "Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array," Phys. Rev. B 71, 075404 1-5 (2005).
    [CrossRef]
  25. P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990).
    [CrossRef]
  26. H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004).
    [CrossRef]
  27. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, "Surface plasmon resonance in conducting metal oxides," J. Appl. Phys. 100, 054905 1-4 (2006).
    [CrossRef]
  28. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, "Dependence of plasmon polaritons on the thickness of indium tin oxide thin films," J. Appl. Phys. 103, 093108 1-6 (2008).
    [CrossRef]
  29. S. Franzen, "Surface Plasmon Polaritons and Screeened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold," J. Phys. Chem. C 112, 6027-6032 (2008).
    [CrossRef]
  30. S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
    [CrossRef]
  31. B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
    [CrossRef]
  32. S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  34. P. Yeh, Optical Waves in Layered Media (Wiley VCH, Weinheim 1988).
  35. We put a note here about the physical quantities used. In general, it is possible to represent the map in terms of θamp; or k on one axis (or also n0sin θ), and in terms of λ or ω on the other. Experimental maps often are (θ -λ) or (θ-ω), while theoretical ones can be (k-ω) when representing the light dispersion curves. When passing from this last kind of visualization to another, an SPP typical dispersion would be somehow differently displayed.

2009 (3)

2008 (5)

K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
[CrossRef] [PubMed]

L. Tutt and J. F. Revelli, "Distribution of radiation from organic light-emitting diode structures with wavelengthscale gratings as a function of azimuth and polar angles," Opt. Lett. 33, 503-505 (2008).
[CrossRef] [PubMed]

A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas, "Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface," J. Opt. Soc. Am. B 25, 1016-1024 (2008).
[CrossRef]

S. Franzen, "Surface Plasmon Polaritons and Screeened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold," J. Phys. Chem. C 112, 6027-6032 (2008).
[CrossRef]

S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
[CrossRef]

2007 (2)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

2006 (3)

J. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006).
[CrossRef] [PubMed]

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

2004 (2)

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004).
[CrossRef]

2002 (1)

S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002).
[CrossRef]

1994 (1)

B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
[CrossRef]

1990 (1)

P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990).
[CrossRef]

1975 (1)

R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
[CrossRef]

Adato, R.

Alieva, E. V.

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Boukherroub, R.

S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
[CrossRef]

Braunstein, R.

P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990).
[CrossRef]

Brewer, H.

H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004).
[CrossRef]

Brewer, S. H.

S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002).
[CrossRef]

Castel, X.

S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
[CrossRef]

Catchpole, K. R.

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Danz, N.

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Descrovi, E.

Dominici, L.

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Franzen, S.

S. Franzen, "Surface Plasmon Polaritons and Screeened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold," J. Phys. Chem. C 112, 6027-6032 (2008).
[CrossRef]

H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004).
[CrossRef]

S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002).
[CrossRef]

Garcia-Llamas, R.

Gaspar-Armenta, J.

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Granqvist, C. G.

B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
[CrossRef]

Guo, J.

Konopsky, V. N.

Lakowicz, J. R.

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Menchini, F.

Michelotti, F.

Olsson, E.

B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
[CrossRef]

Pettit, R. B.

R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Polman, A.

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Ramirez-Duverger, A. S.

Revelli, J. F.

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Robusto, P.

P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990).
[CrossRef]

Silcox, J.

R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Smith, L. H.

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Stjerna, B.

B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
[CrossRef]

Szunerits, S.

S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
[CrossRef]

Tao, F.

Tutt, L.

Vincent, R.

R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
[CrossRef]

Wasey, J. A. E.

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004).
[CrossRef]

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006).
[CrossRef] [PubMed]

Chem. Phys. (1)

H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004).
[CrossRef]

J. Alloys Compd. (1)

S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002).
[CrossRef]

J. Appl. Phys. (1)

B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (2)

S. Franzen, "Surface Plasmon Polaritons and Screeened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold," J. Phys. Chem. C 112, 6027-6032 (2008).
[CrossRef]

S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008).
[CrossRef]

Nature Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. B (1)

R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975).
[CrossRef]

Phys. Stat. Sol. (1)

P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990).
[CrossRef]

Plasmonics (1)

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Other (15)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, "Surface plasmon coupled electroluminescent emission," Appl. Phys. Lett. 92, 103304 1-3 (2008).
[CrossRef]

B. E. Sernelius, Surface Modes in Physics (Wiley VCH, Weinheim, 2001).
[CrossRef]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, "Surface plasmon increase absorption in polymer photovoltaic cells," Appl. Phys. Lett. 91, 113514 1-3 (2007).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 1-3 (2008).
[CrossRef]

V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901 1-4 (2007).
[CrossRef]

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, Amsterdam, 1982).

A. D. Boardman, ed., Electromagnetic Surface Modes (Springer, Berlin, 1982).

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, "Surface plasmon resonance in conducting metal oxides," J. Appl. Phys. 100, 054905 1-4 (2006).
[CrossRef]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, "Dependence of plasmon polaritons on the thickness of indium tin oxide thin films," J. Appl. Phys. 103, 093108 1-6 (2008).
[CrossRef]

M. Sarrazin and J.-P. Vigneron, "Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array," Phys. Rev. B 71, 075404 1-5 (2005).
[CrossRef]

M. Y. C. Xu, M. Z. Alam, A. J. Zilkie, K. Zeaiter, and J. S. Aitchison, "Surface plasmon polaritons mediated by ITO at near infrared wavelength," CLEO/QELS 2008 Conference Digest, JThA132 (2008).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

P. Yeh, Optical Waves in Layered Media (Wiley VCH, Weinheim 1988).

We put a note here about the physical quantities used. In general, it is possible to represent the map in terms of θamp; or k on one axis (or also n0sin θ), and in terms of λ or ω on the other. Experimental maps often are (θ -λ) or (θ-ω), while theoretical ones can be (k-ω) when representing the light dispersion curves. When passing from this last kind of visualization to another, an SPP typical dispersion would be somehow differently displayed.

<jrn>. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, "Tamm plasmon polaritons: Slow and spatially compact light," Appl. Phys. Lett. 92, 251112 1-3 (2008).</jrn>
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (669 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Quasi-normal incidence R and T measurements in the λ ∊ [0.5µm,2.5µm] range. Good fits according to a Drude model are obtained in the λ ∊ [1.0µm,2.5µm] interval and are used to retrieve the parameters and the n and κ dispersion of Tab. 1 and Fig. 2.

Fig. 2.
Fig. 2.

Refractive index (solid) and extinction coefficient (dashed) dispersions with wavelength, according to the Drude parameters of Tab. 1 obtained from fits of quasi-normal incidence reflectance and transmittance measurements in the λ ∊ [1.0µm,2.5µm] range. Points are from attenuated total reflection (ATR) angular scans at discrete wavelengths λ=633nm,830nm,1300nm and 1550nm. Small vertical bars at the bottom indicate the range of the tunable infrared laser for the ATR measurements. The ticks on the top axis indicate the plasma, screened plasma and surface plasmon frequencies.

Fig. 3.
Fig. 3.

Curves corresponding to the dispersion relations of Eq. (4) and (5). Bulk mode in FTO (solid); SPP at the FTO/glass (dadot) and SPP at the FTO/air (long dash) interfaces. Straight lines are the bulk dispersions (light lines) in air (n=1, solid) and inside glass (n=1.515, dot). True surface modes are points on an SPP dispersion curve when this is on the right of both the FTO bulk curve and the corresponding dielectric light line. Dispersions are plotted versus the real part of the in-plane wavevector k. The small trapezoidal area centered at k ≈0.4×107 rad/m and λ ≈1.5µm represents the accessible experimental window with our angular ATR set-up and tunable IR laser.

Fig. 4.
Fig. 4.

Computed reflectance map for the three layer model with BK7 glass, 510 nm thick FTO film, air. Light is incident from the glass side, in the domain λ ∊ [0.5µm,10µm]-θ ∊ [0°,90°]. The dark area on the left is separated from total reflection brighter area on the right by the air light line. For thinner films the SPP feature is better resolved, and it is also possible to observe its formation and evolution as the thickness increases (Media 1).

Fig. 5.
Fig. 5.

Computed reflectance profile for the three layer model with a 200 nm thick FTO film. The three curves are for λ=2.5µm (dashed), 3.0µm (solid) and 3.5µm (dadot). Minimum of the SPP feature is zero, while for thinner or thicker films the minimum tends to increase.

Fig. 6.
Fig. 6.

ATR angular scans obtained at fixed wavelengths. Attenuated total reflectance just on the right of the edge is maximum for the 633nm curve (O), then for the 830nm (×), 1300nm ([]) and 1550nm (∆) ones. The fits shown are obtained by means of the commercial software TFCalc.

Fig. 7.
Fig. 7.

ATR map obtained in Kretschmann configuration for a 510 nm thick FTO film over a sodalime glass sample. The maximum reflectance value corresponds to 0.40 (brightest) and the lowest to zero (darkest). The vertical edge where total reflection occurs is located at θ=42° and corresponds to the light line in air, n=1.

Tables (1)

Tables Icon

Table 1. Drude resonance parameters obtained from the fit of the quasi-normal incidence reflectance and transmittance spectrophotometer measurements in the range λ ∊ [1.0µm,2.5µm].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε˜(ω)=εωp2ω(ω+jΓ)
εR(λ)=εA1A22λ2λ2+A22εI(λ)=A1A2λ3λ2+A22
ε˜(ω)=ε(1ω̅p2+Γ2ω2+Γ2+jω̅p2+Γ2ω2+Γ2Γω)
q1,2=ωc ε1,2(ω)
k=ωc ε1(ω)ε2(ω)ε1(ω)+ε2(ω)

Metrics