Abstract

In this work, we use the finite-difference time-domain method in conjunction with a genetic algorithm (GA) to design a photonic crystal waveguide with gratinglike surface added for highly-efficient directional emission. By placing a detector at different locations in the output field, we have obtained both on-axis and off-axis highly-efficient directional emission designs with the help of GA. The interference of light emitted from the outlet of waveguide and surfaces modes in gratinglike surface is believed to account for the directional beaming effect in our designs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  2. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
    [CrossRef] [PubMed]
  3. S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  4. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
    [CrossRef]
  5. D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
    [CrossRef]
  6. C.-C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428 (2006).
    [CrossRef] [PubMed]
  7. D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
    [CrossRef]
  8. Y. L. Zhang, Y. Zhang, and B. J. Li, "Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides," Opt. Express 15, 9281-9286 (2007).
    [CrossRef] [PubMed]
  9. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
    [CrossRef]
  10. Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
    [CrossRef]
  11. Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
    [CrossRef]
  12. H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
    [CrossRef]
  13. H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
    [CrossRef]
  14. W. Śmigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
    [CrossRef]
  15. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975).
  16. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).
  17. L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
    [CrossRef]
  18. L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
    [CrossRef]
  19. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004).
    [CrossRef] [PubMed]
  20. J. Smajic, C. Hafner, and D. Erni, "Optimization of photonic crystal structures," J. Opt. Soc. Am. A 21, 2223-2232 (2004).
    [CrossRef]
  21. R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
    [CrossRef]
  22. A. Husakov, and J. Herrmann, "Chirped multilayer hollow waveguides with broadband transmission," Opt. Express 17, 3025-3035 (2009).
    [CrossRef]
  23. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston London, 2000).

2009 (1)

2008 (4)

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

2007 (4)

Y. L. Zhang, Y. Zhang, and B. J. Li, "Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides," Opt. Express 15, 9281-9286 (2007).
[CrossRef] [PubMed]

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
[CrossRef]

W. Śmigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

2006 (2)

C.-C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428 (2006).
[CrossRef] [PubMed]

D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

2005 (3)

S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
[CrossRef]

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

2004 (5)

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004).
[CrossRef] [PubMed]

J. Smajic, C. Hafner, and D. Erni, "Optimization of photonic crystal structures," J. Opt. Soc. Am. A 21, 2223-2232 (2004).
[CrossRef]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

2003 (1)

L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
[CrossRef]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Bigot, L.

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Bossard, J. A.

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

Bravo-Abad, J.

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

Chen, C.-C.

Chen, H. B.

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

Chen, L. X.

D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Chen, X. S.

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

Cui, J.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Cui, Y. P.

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Ding, W. Q.

D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Douay, M.

Drupp, R. P.

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

Ekmel, O.

Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
[CrossRef]

Erni, D.

Frei, W. R.

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
[CrossRef]

Gan, D.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Hafner, C.

Håkansson, A.

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

He, S. L.

L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
[CrossRef]

Herrmann, J.

Husakov, A.

Iliew, R.

Ji, J. R.

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Johnson, H. T.

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
[CrossRef]

Kerrinckx, E.

Kivshar, Y. S.

S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Koray, A.

Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Lederer, F.

Li, B. J.

Li, Z. F.

Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
[CrossRef]

López-Zanón, D.

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Lu, W.

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

Luo, X.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Ma, J.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Mayer, T. S.

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

Moreno, E.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Morrison, S. K.

S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

Pertsch, T.

Qi, Y.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Quiquempois, Y.

Sánchez-Dehesa, J.

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Sanchis, L.

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Shen, L. F.

L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
[CrossRef]

Smajic, J.

Smigaj, W.

W. Śmigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Tang, D. H.

D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Tortorelli, D. A.

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
[CrossRef]

Tünnermann, A.

Wang, C.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Wang, J.

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

Wang, Q.

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Werner, D. H.

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

Yan, C. C.

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Yang, X.

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Ye, W. M.

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Ye, Z.

L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
[CrossRef]

Yuan, X. D.

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Zen, C.

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Zhang, J. Y.

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Zhang, L. L.

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Zhang, Y.

Zhang, Y. L.

Zhu, Z. H.

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Appl. Phys. B (2)

D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008).
[CrossRef]

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007).
[CrossRef]

Appl. Phys. Lett. (7)

Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004).
[CrossRef]

D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005).
[CrossRef]

R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (3)

L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003).
[CrossRef]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004).
[CrossRef]

W. Śmigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Physica B (1)

H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008).
[CrossRef]

Other (3)

J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston London, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the to-be optimized PC structure. (a) on-axis directional emission model. (b) off-axis directional emission model. The left part is a PCW, a being the lattice constant. The middle part is a gratinglike surface and ri represent the to-be optimized parameters. The right part is a detector centered at (xD , yD ) to characterize the directional emission.

Fig. 2.
Fig. 2.

Flowchart of binary GA.

Fig. 3.
Fig. 3.

Statistic information on searching process in each GA project.

Fig. 4.
Fig. 4.

Directed power versus wavelength for the optimum structure in each GA project.

Fig. 5.
Fig. 5.

Electric-field amplitude distributions for different structures (a) PCW with no gratinglike surface added, (b) PCW with optimum gratinglike surface added for on-axis design, (c) PCW with optimum gratinglike surface added for off-axis (10 degrees) design, and (d) PCW with optimum gratinglike surface added for off-axis (20 degrees) design.

Fig. 6.
Fig. 6.

Angular intensity distribution of the output light for four structures as indicated in figures 5(a)–(d).

Fig. 7.
Fig. 7.

Normalized transmission coefficients versus detector location for three optimum directional-emitting structures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Si=(C1,C2,C3,,CL)=(Sr1,Sr2,Sr3,,Sr8) , (i=1,2,3,,Nc)
ri=BTD(Sri)100×a, (i=1,2,3,,8)
Fi=PD(ω0)=2t2t1t1t2Ω(ω0,t)dt , (i=1,2,3,,Nc)
{Ω(ω0,t)=Re[06a[ED(t)×HD*(t)]dl]Re[0λ[Es(t)×Hs*(t)]dl']t1=N1Δt,t2=N2Δt,Δt=1c1Δx2+1Δy2
Pi=Fik=1NcFk , (i=1,2,3,,Nc)
{Schild,1=(Sparent,1(1),,Sparent,1(h),Sparent,2(h+1),,Sparent,2(L))Schild,2=(Sparent,2(1),,Sparent,2(h),Sparent,1(h+1),,Sparent,1(L))
Smut=(Sorig(1),,Sorig(q1),Sorig(q)̅̅̅̅̅̅̅,Sorig(q+1),,Sorig(L))

Metrics