Abstract

Fiber Bragg Gratings with reflectivity up to 25 dB have been photo-written in the core of a 2D all-solid Photonic Bandgap Fiber without modification of the guiding properties of the fiber. This result is obtained by combining an appropriate glass composition for the high index inclusions constituting the micro-structured cladding and a photosensitive low index core. Couplings of the fundamental core guided mode with cladding modes are investigated and compared to theoretical predictions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. N. M. Litchinister, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. Martijn de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
    [CrossRef]
  3. G Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibres revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
    [CrossRef] [PubMed]
  4. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovani, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003).
    [CrossRef]
  5. T. P. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  6. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
    [CrossRef] [PubMed]
  7. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
    [CrossRef] [PubMed]
  8. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]
  9. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5µm," Opt. Express 15, 316-324 (2006).
    [CrossRef]
  10. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, "Low loss all solid photonic bandgap fiber," Opt. Lett. 32, 1023-1025 (2007).
    [CrossRef] [PubMed]
  11. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, "Improvements of solid-core photonic bandgap fibers by means of interstitial air holes," Opt. Lett. 32, 1719-1721 (2007).
    [CrossRef] [PubMed]
  12. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J.C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
    [CrossRef]
  13. A. Isomaki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  14. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  15. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  16. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007 (2007).
    [CrossRef]
  17. D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
    [CrossRef] [PubMed]
  18. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, "Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers," Opt. Express 16, 21119-21131 (2008).
    [CrossRef] [PubMed]
  19. L. Jin, Z. Wang, Q. Fang, B. Liu, Y. Liu, G. Kai, X. Dong, and B. O. Guan, "Bragg grating resonances in all-solid bandgap fibers," Opt. Lett. 32, 2717-2719 (2007).
    [CrossRef] [PubMed]
  20. L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, "Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers," Opt. Express 1515555-15565 (2007).
    [CrossRef] [PubMed]
  21. B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
    [CrossRef]
  22. G. J. Pearce, T. D. Hedley, and D. M. Bird, "Adaptative curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystal," Phys. Rev. B 71195108- (2005).
    [CrossRef]
  23. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006).
    [CrossRef] [PubMed]
  24. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]

2008 (2)

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, "Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers," Opt. Express 16, 21119-21131 (2008).
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

2007 (6)

2006 (7)

2005 (3)

2004 (1)

2003 (3)

1994 (1)

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

1989 (1)

Albert, J.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Alkeskjold, T. T.

Argyros, A.

Bétourné, A.

Bigot, L.

Bilodeau, F.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bise, R.

Bjarklev, A.

Bouwmans, G.

Boyer, P.

Broeng, J.

Cerqueira, A.

Cordeiro, C. B.

Cordeiro, C. M. B.

DiGiovani, D. J.

Dong, X.

Douay, M.

Dunn, S. C.

Eggleton, B. J.

Fang, Q.

George, A. K.

Glenn, W. H.

Guan, B. O.

Gujrathi, S.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Hattori, K.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, "Adaptative curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystal," Phys. Rev. B 71195108- (2005).
[CrossRef]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
[CrossRef] [PubMed]

Her, T. H.

Hermann, D. S.

Hibino, Y.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Hill, K. O.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Isomaki, A.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Jasapara, J.

Jin, L.

Johnson, D. C.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Kai, G.

Kitagawa, T.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Knight, J. C.

Knight, J.C.

Kuhlmey, B. T.

Laegsgaard, J.

Larsen, T. P.

Leon-Saval, S. G.

Litchinister, N. M.

Liu, B.

Liu, Y.

Lopez, F.

Luan, F.

Luo, J.

Mägi, E. C.

Malo, B.

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

Martijn de Sterke, C.

McPhedran, R. C.

Meltz, G.

Moore, E. D.

Morey, W. W.

Noordegraaf, D.

Okhotnikov, O. G.

Pearce, G. J.

Perrin, M.

Provino, L.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5µm," Opt. Express 15, 316-324 (2006).
[CrossRef]

Quiquempois, Y.

Ren, G.

Renversez, G

Rindorf, L.

Russell, P. St. J.

Sagrini, A.

Scolari, L.

Shum, P.

Steinvurzel, P.

Tong, W.

Usner, B.

Wang, A.

Wang, Z.

White, T. P.

Windeler, R.

Yu, X.

Zhang, L.

Appl. Phys. Lett. (2)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, K. O. Hill, K. Hattori, Y. Hibino, and S. Gujrathi, "Photosensitivity in phosphorus-doped silica glass and optical waveguides," Appl. Phys. Lett. 65394-396 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (13)

T. P. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005).
[CrossRef] [PubMed]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5µm," Opt. Express 15, 316-324 (2006).
[CrossRef]

N. M. Litchinister, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. Martijn de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003).
[CrossRef]

G Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibres revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006).
[CrossRef] [PubMed]

A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J.C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).
[CrossRef]

A. Isomaki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007 (2007).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
[CrossRef] [PubMed]

L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, "Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers," Opt. Express 16, 21119-21131 (2008).
[CrossRef] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006).
[CrossRef] [PubMed]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, "Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers," Opt. Express 1515555-15565 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. B (1)

G. J. Pearce, T. D. Hedley, and D. M. Bird, "Adaptative curvilinear coordinates in a plane-wave solution of Maxwell's equations in photonic crystal," Phys. Rev. B 71195108- (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Refractive index profile of one of the phosphorous-doped silica core preforms used to realize the high index inclusions of the micro-structured cladding of the SC-PBGF (blue) and of the germanium/fluorine co-doped silica preform used to realize the photosensitive core of the fiber (red). (b) Optical image of the SC-PBGF.

Fig. 2.
Fig. 2.

DOS diagram of the periodic structure based on a triangular array of high index inclusions presenting the refractive index profile of Fig. 1(a). The color-scale stands for non-zero DOS regions (high DOS in red) whereas white color stands for zero DOS regions. Fundamental core guided mode dispersion in the bandgap #2 is represented in red and glass line is represented in green. The top scale is given for a pitch, Λ, of 13.1 µm. The scalar LPlm modes of the isolated high index inclusions (see for example [20, 23]) from which each band evolves in the high index regime are also reported.

Fig. 3.
Fig. 3.

(a) Transmission curve measured on a 1.5 m-long fiber. (b) Attenuation curve centered on bandgap #2 and obtained by cutting back an 8 m-long sample. Optical image of the guided mode at 1550 nm is reported in inset.

Fig. 4.
Fig. 4.

(a) Reflected and transmitted power spectra of the FBG written around 1526 nm. (b) Transmission curves of bandgap #2 before and after photo-writing of the FBG at 1437 nm. Resolution was set to 1 nm. A spectrum of the FBG recorded at high resolution (0.05 nm) is reported in inset.

Fig. 5.
Fig. 5.

(a) Zoom of Fig. 2 in the wavelength range of interest. (b) Representation of the phase-matching condition defined by Eq. 1 for the FBG illustrated on Fig. 4(a). Black curve illustrates the coupling of the core guided mode with counter-propagating core guided modes (corresponding to resonance R1 on Fig. 4(a)) whereas pink, red, blue, green and orange curves illustrate the phase-matching conditions between core guided mode and cladding modes located in, respectively, high DOS regions 5, 1, 2, 3 and 4. All the spectral dependences of the effective indices have been extracted from Fig. 2 including, for the core guided mode, the mean refractive index increase induced by UV beam.

Fig. 6.
Fig. 6.

Optical images of the light reflected by the FBG written around 1526 nm. From left to right, the wavelength of the light collected is around 1524.8nm (a), 1526.1 nm (b) and 1526.7 nm (c). Position of high index inclusions is reported in clear yellow.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΛFBG=λneff1+neff2

Metrics