Abstract

A miniaturized probe that possesses a diameter of 0.4 mm is developed for two-photon-excited fluorescence imaging. The miniaturized probe was manufactured by the collapse of air holes and the formation of a lens on the tip of a double-clad photonic crystal fiber (DCPCF) using electric arc discharging from a conventional fusion splicer. As a result, a femtosecond pulsed laser beam delivered by the DCPCF can be directly focused on a sample for two-photon fluorescence imaging. The numerical aperture of the lensed DCPCF is 0.12. The corresponding focal spot size is 6 µm, which is close to the diffraction limit. This 0.4-mm-diamter probe can provide clear two-photon-excited fluorescence images of 10-µm-diameter fluorescent microspheres.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging,” Opt. Lett. 33(12), 1333–1335 (2008).
    [CrossRef] [PubMed]
  3. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [CrossRef] [PubMed]
  4. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
    [CrossRef] [PubMed]
  5. T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
    [CrossRef] [PubMed]
  6. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27(12), 1031–1033 (2002).
    [CrossRef]
  7. D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
    [CrossRef] [PubMed]
  8. D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microsc. 208(1), 35–48 (2002).
    [CrossRef] [PubMed]
  9. L. Fu, X. Gan, and M. Gu, “Use of a single-mode fiber coupler for second-harmonic-generation microscopy,” Opt. Lett. 30(4), 385–387 (2005).
    [CrossRef] [PubMed]
  10. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [CrossRef] [PubMed]
  11. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [CrossRef] [PubMed]
  12. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528 (2005).
    [CrossRef] [PubMed]
  13. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006).
    [CrossRef] [PubMed]
  14. L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett. 31(10), 1471–1473 (2006).
    [CrossRef] [PubMed]
  15. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007).
    [CrossRef] [PubMed]
  16. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
    [CrossRef] [PubMed]
  17. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
    [CrossRef] [PubMed]
  18. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008).
    [CrossRef] [PubMed]
  19. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
    [CrossRef] [PubMed]
  20. T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
    [CrossRef]
  21. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  22. G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31(7), 894–896 (2006).
    [CrossRef] [PubMed]
  23. H. Bao and M. Gu, “Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy,” Opt. Lett. 34(2), 148–150 (2009).
    [CrossRef] [PubMed]
  24. N. Mihajlovic, G.W. ‘t Hooft, B.H.W. Hendriks, W.C.J. Bierhoff, C.A. Hezemans, R. Harbers, A.L. Braun, J.J.L. Horikx, and A.E. Desjardins, “Electromagnetically-Controlled Fiber-Scanning Confocal Microscope,” OSA Optics & Photonics Congress, NWC5, (2009).

2009

2008

2007

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

2006

2005

2003

2002

D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27(12), 1031–1033 (2002).
[CrossRef]

D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microsc. 208(1), 35–48 (2002).
[CrossRef] [PubMed]

2001

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Allen, J.

Anderson, E. P.

Baker, J. R.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

Bao, H.

Ben-Yakar, A.

Bird, D.

Bouma, B. E.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Bouwmans, G.

Bückle, R.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Cao, Z.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Chang, Y. C.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

Chen, P.

Choi, H. Y.

Cocker, E. D.

Cranfield, C.

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Durr, N. J.

Ehlers, A.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Engelbrecht, C. J.

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Flusberg, B. A.

Fu, L.

Gan, X.

Gu, M.

H. Bao and M. Gu, “Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy,” Opt. Lett. 34(2), 148–150 (2009).
[CrossRef] [PubMed]

H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging,” Opt. Lett. 33(12), 1333–1335 (2008).
[CrossRef] [PubMed]

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[CrossRef] [PubMed]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett. 31(10), 1471–1473 (2006).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, “Use of a single-mode fiber coupler for second-harmonic-generation microscopy,” Opt. Lett. 30(4), 385–387 (2005).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528 (2005).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27(12), 1031–1033 (2002).
[CrossRef]

D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microsc. 208(1), 35–48 (2002).
[CrossRef] [PubMed]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Helmchen, F.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Hoy, C. L.

Im, J. E.

Jain, A.

James, R.

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Johnston, R. S.

Jung, J. C.

Kaatz, M.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Kim, J.

Knight, J. C.

Kong, G. J.

König, K.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Kotlyar, A.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Lee, B. H.

Li, X.

MacDonald, D. J.

Majoros, I. J.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Motz, J. T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Myaing, M.

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Myaing, M. T.

Norris, T. B.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

Paek, U. C.

Park, B. H.

Pattie, R.

Piyawattanametha, W.

Ra, H.

Riemann, I.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Russell, P. S.

Schenkl, S.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Schnitzer, M. J.

Seibel, E. J.

Solgaard, O.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Tearney, G. J.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Thomas, T.

Thomas, T. P.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Vance, R.

Wadsworth, W. J.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

White, W. M.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Xie, H.

Yang, C.

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Ye, J. Y.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

Yelin, D.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, T. B. Norris, and J. R. Baker., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” J. Biomed. Opt. 13(1), 014024 (2008).
[CrossRef] [PubMed]

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007).
[CrossRef] [PubMed]

J. Microsc.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microsc. 208(1), 35–48 (2002).
[CrossRef] [PubMed]

Microsc. Res. Tech.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007).
[CrossRef] [PubMed]

Nature

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Neuron

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm x 475 microm field of view for in vivo imaging,” Opt. Lett. 33(12), 1333–1335 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

H. Bao and M. Gu, “Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy,” Opt. Lett. 34(2), 148–150 (2009).
[CrossRef] [PubMed]

G. J. Kong, J. Kim, H. Y. Choi, J. E. Im, B. H. Park, U. C. Paek, and B. H. Lee, “Lensed photonic crystal fiber obtained by use of an arc discharge,” Opt. Lett. 31(7), 894–896 (2006).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett. 31(10), 1471–1473 (2006).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27(12), 1031–1033 (2002).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

D. Bird and M. Gu, “Two-photon fluorescence endoscopy with a micro-optic scanning head,” Opt. Lett. 28(17), 1552–1554 (2003).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, “Use of a single-mode fiber coupler for second-harmonic-generation microscopy,” Opt. Lett. 30(4), 385–387 (2005).
[CrossRef] [PubMed]

Proc. SPIE

T. P. Thomas, J. Y. Ye, C. Yang, M. Myaing, I. J. Majoros, A. Kotlyar, Z. Cao, T. B. Norris, and R. James, “Baker Jr, “Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe,” Proc. SPIE 6095, 60950Q (2006).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

N. Mihajlovic, G.W. ‘t Hooft, B.H.W. Hendriks, W.C.J. Bierhoff, C.A. Hezemans, R. Harbers, A.L. Braun, J.J.L. Horikx, and A.E. Desjardins, “Electromagnetically-Controlled Fiber-Scanning Confocal Microscope,” OSA Optics & Photonics Congress, NWC5, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic setup for two-photon-excited fluorescence imaging using a 0.4-mm-diameter optical fiber probe.

Fig. 2
Fig. 2

(a) FWHM of the excitation laser focal spot, (b) NA of the DCPCF lens and (c) working distance of the DCPCF lens tip versus Lf while the radius (R) of the DCPCF lens tip is 200 µm, 250 µm, and 300 µm, respectively.

Fig. 3
Fig. 3

(a) Optical microscopy transmission image of the fabricated DCPCF tip with R = 200 µm and Lf = 1.4 mm. (b) Light intensity image of the excitation laser focal spot using the DCPCF tip in (a). (c) Optical microscope transmission image of the fabricated DCPCF tip with R = 200 µm and Lf = 2.4 mm. (d) Light intensity image of the excitation laser focal spot using the DCPCF tip in (c).

Fig. 4
Fig. 4

A set of two-photon-excited fluorescence images of 10-µm-diameter fluorescent microspheres. Size of the images: 200 µm × 200 µm. (a) D = 530 µm (b) D = 490 µm (c) D = 450 µm (d) D = 410 µm (e) D = 370 µm (f) D = 330 µm.

Metrics