Abstract

We present the first demonstration of Nd:YAG laser pumped directly in band at 938 nm with a high-brightness fiber-coupled laser diode. Up to 6 W of CW laser emission at 1064 nm have been obtained under an absorbed pump power of 28 W at 938 nm. A comparison between 808 nm and 938 nm pumping, realized by thermal cartography, demonstrates the very low heat generation of in-band pumping. Numerical simulations were also implemented to study and discuss the laser performance of our system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
    [CrossRef]
  2. M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
    [CrossRef]
  3. P. Zhu, D. J. Li, P. X. Hu, A. Schell, P. Shi, C. R. Haas, N. A. L. Wu, and K. M. Du, "High efficiency 165 W near-diffraction-limited Nd : YVO4 slab oscillator pumped at 880 nm," Opt. Lett. 33, 1930-1932 (2008).
    [CrossRef] [PubMed]
  4. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  5. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level," Appl. Opt. 38, 7382-7385 (1999).
    [CrossRef]
  6. V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping," Opt. Lett. 26, 1678-1680 (2001).
    [CrossRef]
  7. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, "High-efficiency 60 W TEM00 Nd : YVO4 oscillator pumped at 888 nm," Opt. Lett. 31, 3297-3299 (2006).
    [CrossRef] [PubMed]
  8. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
    [CrossRef]
  9. M. Frede, R. Wilhelm, and D. Kracht, "250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level," Opt. Lett. 31, 3618-3619 (2006).
    [CrossRef] [PubMed]
  10. S. Goldring, and R. Lavi, "Nd : YAG laser pumped at 946 nm," Opt. Lett. 33, 669-671 (2008).
    [CrossRef] [PubMed]
  11. J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J. M. Fourmigué, K. Lebbou, A. Brenier, and O. Tillement, "High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique," Opt. Lett. 31, 3468- 3471 (2006).
    [CrossRef] [PubMed]
  12. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid-state lasers: The case of ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
    [CrossRef]
  13. J. Didierjean, E. Herault, F. Balembois, and P. Georges, "Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals," Opt. Express 16, 8995-9010 (2008).
    [CrossRef] [PubMed]
  14. A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, "Temperature dependence of the 1.06-mu m stimulated emission cross section of neodymium in YAG and in GSGG," Appl. Opt. 41, 7052-7057 (2002).
    [CrossRef] [PubMed]
  15. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
    [CrossRef]
  16. A. A. Kaminskii, Laser crystals, their physics and properties (Springer-Verlay, 1986).

2008 (4)

2006 (5)

2005 (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

2004 (1)

2002 (1)

2001 (2)

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

1999 (1)

Balembois, F.

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, "Temperature dependence of the 1.06-mu m stimulated emission cross section of neodymium in YAG and in GSGG," Appl. Opt. 41, 7052-7057 (2002).
[CrossRef] [PubMed]

Brenier, A.

Castaing, M.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid-state lasers: The case of ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Didierjean, J.

Dong, J.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid-state lasers: The case of ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Du, K. M.

Engelbrecht, M.

M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
[CrossRef]

Fallnich, C.

M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid-state lasers: The case of ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Fourmigué, J. M.

Frede, M.

M. Frede, R. Wilhelm, and D. Kracht, "250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level," Opt. Lett. 31, 3618-3619 (2006).
[CrossRef] [PubMed]

M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
[CrossRef]

Georges, P.

Goldring, S.

S. Goldring, and R. Lavi, "Nd : YAG laser pumped at 946 nm," Opt. Lett. 33, 669-671 (2008).
[CrossRef] [PubMed]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

Haas, C. R.

Herault, E.

Howard, A.

Hu, P. X.

Huber, G.

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Jackel, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level," Appl. Opt. 38, 7382-7385 (1999).
[CrossRef]

Jeong, Y.

Katz, M.

Knappe, R.

Kracht, D.

M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
[CrossRef]

M. Frede, R. Wilhelm, and D. Kracht, "250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level," Opt. Lett. 31, 3618-3619 (2006).
[CrossRef] [PubMed]

Krankel, C.

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Lavi, R.

Lebbou, K.

Lebiush, E.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level," Appl. Opt. 38, 7382-7385 (1999).
[CrossRef]

Li, D. J.

Lupei, V.

McDonagh, L.

Nebel, A.

Nilsson, J.

Paiss, I.

Pavel, N.

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

Payne, D. N.

Perrodin, D.

Petermann, K.

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Peters, R.

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, "Temperature dependence of the 1.06-mu m stimulated emission cross section of neodymium in YAG and in GSGG," Appl. Opt. 41, 7052-7057 (2002).
[CrossRef] [PubMed]

Sahu, J. K.

Schell, A.

Shi, P.

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

Taira, T.

Tal, A.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

Tillement, O.

Tzuk, Y.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, "Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level," Appl. Opt. 38, 7382-7385 (1999).
[CrossRef]

Ueda, K.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

Wallenstein, R.

Wilhelm, R.

Winik, M.

Wu, N. A. L.

Xiao, G. H.

Zhao, S. Z.

Zhu, P.

Appl. Opt. (2)

Appl. Phys. B (1)

N. Pavel, C. Krankel, R. Peters, K. Petermann, and G. Huber, "In-band pumping of Nd-vanadate thin-disk lasers," Appl. Phys. B 91, 415-419 (2008).
[CrossRef]

Opt. Comm. (1)

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd : YAG laser," Opt. Comm. 195, 427-430 (2001).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

M. Frede, D. Kracht, M. Engelbrecht, and C. Fallnich, "Compact high-power end-pumped Nd : YAG laser," Opt. Laser Technol. 38, 183-185 (2006).
[CrossRef]

Opt. Lett. (6)

Phys. Status Solidi A (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, "Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals," Phys. Status Solidi A 202, 2565-2573 (2005).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, "On thermal effects in solid-state lasers: The case of ytterbium-doped materials," Prog. Quantum Electron. 30, 89-153 (2006).
[CrossRef]

Other (1)

A. A. Kaminskii, Laser crystals, their physics and properties (Springer-Verlay, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for absorption measurement and thermal mapping.

Fig. 2.
Fig. 2.

Evolution of the absorption percentage with the crystal temperature for 120 W of incident pump power from the diode at 938 nm.

Fig. 3.
Fig. 3.

Experimental temperature profiles of the pumped end-face at 808 nm (red) and 938 nm (blue). The reference (0°C) is the crystal mount temperature. Dots correspond to the experiments and solid lines to the FEA calculations. Image of the pumped face with a power of 6.7 W at 808 nm is shown in the inset.

Fig. 4.
Fig. 4.

Experimental laser setup

Fig. 5.
Fig. 5.

Maximum output power at 1064 nm as a function of absorbed pump power at 938 nm for a fixed crystal temperature of 150°C.

Fig. 6.
Fig. 6.

Measured (circle) and calculated laser power at 1064 nm for doping rates of 0.7 at.% (solid line) and 2 at.% (dashed line) as a function of the crystal temperature between 25°C and 200°C for an incident pump power of 120 W at 938 nm.

Tables (1)

Tables Icon

Table 1. Incident pump power and absorption coefficient for the two pumping wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(r,z)T(r0,z)=ηH4π.KcdPdz(z).f(r,z)

Metrics