Abstract

We report on the fabrication of buried cannel waveguides in Sapphire crystals by 250-kHz high repetition rate ultrafast laser inscription with 385 nm pulses. The propagation properties of the waveguides were studied as a function of the writing conditions. The micro-fluorescence analysis of the R lines generated by trace Cr3+ dopant in Sapphire is used to elucidate the micro-structural modifications induced in the crystal network. It is revealed that waveguide has been formed due to local dilatation of the Sapphire network generated in the surroundings of the focal volume. The refractive index increment due to the dilatation induced electronic polarizability enhancement has been estimated to be of the order of Δn ≈10−4.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [CrossRef]
  3. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
    [CrossRef]
  4. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
    [CrossRef]
  5. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005).
    [CrossRef] [PubMed]
  6. B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
    [CrossRef]
  7. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842 (2007).
    [CrossRef] [PubMed]
  8. Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
    [CrossRef]
  9. J. H. Kim, M.-K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
    [CrossRef] [PubMed]
  10. V. Apostolopoulos, L. M. B. Hickey, D. A. Sager, and J. S. Wilkinson, “Gallium-diffused waveguides in sapphire,” Opt. Lett. 26(20), 1586–1588 (2001).
    [CrossRef]
  11. A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
    [CrossRef]
  12. A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
    [CrossRef]
  13. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
    [CrossRef]
  14. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
    [CrossRef] [PubMed]
  15. Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993).
    [CrossRef]
  16. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
    [CrossRef] [PubMed]
  17. N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
    [CrossRef]
  18. S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
    [CrossRef]

2008

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

J. H. Kim, M.-K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008).
[CrossRef] [PubMed]

2007

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842 (2007).
[CrossRef] [PubMed]

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

2006

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

2005

2004

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

2003

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

2002

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef]

2001

S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
[CrossRef]

V. Apostolopoulos, L. M. B. Hickey, D. A. Sager, and J. S. Wilkinson, “Gallium-diffused waveguides in sapphire,” Opt. Lett. 26(20), 1586–1588 (2001).
[CrossRef]

1997

1996

1993

Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993).
[CrossRef]

N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
[CrossRef]

1972

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

An, H.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Anderson, A. A.

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

V. Apostolopoulos, L. M. B. Hickey, D. A. Sager, and J. S. Wilkinson, “Gallium-diffused waveguides in sapphire,” Opt. Lett. 26(20), 1586–1588 (2001).
[CrossRef]

Arai, A.

Balili, R. B.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Balzaretti, N. M.

N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
[CrossRef]

Barnett, J. D.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Block, S.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

Brantley, C.

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Cerullo, G.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef]

Chen, K. P.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Chen, M.-K.

Clarke, D. R.

Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993).
[CrossRef]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Crunteanu, A.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

da Jornada, J. A. H.

N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
[CrossRef]

Davis, K. M.

De Silvestri, S.

Denis, J. P.

N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
[CrossRef]

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Eason, R. W.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[CrossRef]

Eaton, S.

Edwards, E.

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Fleming, S.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Forman, R. A.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

Gill, D. S.

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Grivas, C.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997).
[CrossRef]

Gupta, Y. M.

S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
[CrossRef]

Herman, P. R.

Hibert, C.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Hickey, L. M. B.

Hirao, K.

Hoffmann, P.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Jänchen, G.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Jelinek, M.

Jones, S. C.

S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
[CrossRef]

Kar, A. K.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Kim, J. H.

Laporta, P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef]

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Lee, J.

Luo, C.

Ma, Q.

Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993).
[CrossRef]

Marangoni, M.

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

McMillen, B.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Miura, K.

Nejadmalayeri, A. H.

Osellame, R.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef]

Pickrell, G.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Piermarini, G. J.

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

Polli, D.

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Qi, B.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Ramponi, R.

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Ruffin, P.

Safaai-Jazi, A.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Sager, D. A.

Salathe, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Salathé, R. P.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

Shah, L.

Shepherd, D. P.

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Snoke, D.

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Sugimoto, N.

Taccheo, S.

Thomson, R. R.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Vainos, N. A.

Vaughan, B. A. M.

S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
[CrossRef]

Wang, A.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Wilkinson, J. S.

Yang, C. E.

Yin, S. S.

Zhang, Y.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Appl. Phys. B

A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002).
[CrossRef]

Appl. Phys. Lett.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

J. Am. Ceram. Soc.

Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993).
[CrossRef]

J. Appl. Phys.

N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993).
[CrossRef]

S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001).
[CrossRef]

Opt. Eng.

Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Science

R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical microscope images of the end face of the irradiated Sapphire sample as obtained for different pulse energies and translation speeds. The propagation direction of the UV irradiation pulses is indicated by arrows. The waveguide’s fundamental propagation modes at 632 nm obtained in each case are shown in the bottom line. Note that for the case of 350 nJ pulse energy no waveguiding was obtained for the maximum translation speed. Scale bar is 20 microns. Aspect Ratio is 1:1.

Fig. 2
Fig. 2

(a).- Micro-Luminescence spectrum obtained from the micro-structured Sapphire sample as obtained after 488 nm excitation. The R1 and R2 lines generated by Cr3+ traces are labeled. Spatial dependence of the R1 line intensity and bandwidth as obtained from the damage track obtained with a pulse energy of 500 nJ and 0.2 mm/s translation speed, respectively ((b) and (c), respectively). Scale bar is 20 microns. Aspect Ratio is 1:1.

Fig. 3
Fig. 3

Spatial distribution of the R1 line position as obtained for four damage sites generated with different pulse energies and translation speeds. Solid and dashed arrows indicate the irradiation direction and the waveguide’s location, respectively.

Metrics