Abstract

We studied the absorptive and refractive nonlinearities at 532 nm and 26 ps pulses for silicon-nitride films containing silicon nanoclusters (nc-Si) prepared by remote plasma-enhanced chemical vapor deposition (RPECVD). Using a self-diffraction technique, we measured for the as-grown sample β=7.7×10-9m/W, n 2=1.8×10-16m2/W, and |χ (3) 1111|=4.6×10-10esu; meanwhile, when the sample was exposed to an annealing process at 1000°C during one hour in a nitrogen atmosphere, we obtained β=-5×10-10m/W, n 2=9×10-17m2/W, and |χ (3) 1111|=1.1×10-10esu. A pure electronic nonlinear refraction was identified and a large threshold ablation of 41 J/cm2 was found for our films. By fitting nonlinear optical transmittance measurements, we were able to estimate that the annealed sample exhibits a response time close to 1 fs. We report an enhancement in the photoluminescence (PL) signal after the annealing process, as well as a red-shift due to an increment in size of the nc-Si during the thermal process.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
    [CrossRef]
  2. T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
    [CrossRef]
  3. N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999).
    [CrossRef]
  4. S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999).
    [CrossRef]
  5. D. J. Lockwood, Ed., Light Emission in Silicon: From Physics to Devices, (Academic, San Diego, 1998), Chap. 1.
  6. J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).
  7. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
    [CrossRef] [PubMed]
  8. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
    [CrossRef]
  9. R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego 1992).
  10. Y. Li, S. Zhang, J. Liu, and K. Zhang, "Quantum correlation between fundamental and second-harmonic field via second-harmonic generation," J. Opt. Soc. Am. B 24, 660-663 (2007).
    [CrossRef]
  11. M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
    [CrossRef] [PubMed]
  12. J. P. Dowling, "Quantum information: To compute or not to compute?" Nature 439, 919-920 (2006).
    [CrossRef] [PubMed]
  13. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman "Thermal on Kerr non linear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express 16, 12987-12994 (2008).
    [CrossRef] [PubMed]
  14. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
    [CrossRef]
  15. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  16. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
    [CrossRef] [PubMed]
  17. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  19. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
    [PubMed]
  20. R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," IEEE Electron. Lett. 38, 1352-1354 (2002).
    [CrossRef]
  21. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
    [CrossRef] [PubMed]
  22. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
    [CrossRef] [PubMed]
  23. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  24. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
    [CrossRef] [PubMed]
  25. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
    [CrossRef] [PubMed]
  26. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
    [CrossRef] [PubMed]
  27. A. Cowan, G. Rieger, and J. Young, "Nonlinear transmission of 1.5 mm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
    [CrossRef] [PubMed]
  28. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All-optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
    [CrossRef] [PubMed]
  29. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
    [CrossRef] [PubMed]
  30. M.A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon waveguides," Opt. Express 15, 12949-12958 (2007).
    [CrossRef] [PubMed]
  31. P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
    [CrossRef]
  32. H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008).
    [CrossRef]
  33. E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
    [CrossRef]
  34. H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
    [CrossRef]
  35. S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
    [CrossRef]
  36. C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J.C. Alonso, and A. Oliver, "Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon nitride film," Opt. Express,  16, 18390-18396 (2008)
    [CrossRef] [PubMed]
  37. M. Mayer, SIMNRA User’s Guide, Version 6.0, (Max Planck-Institute für Plasmaphysik, Garching).
  38. C. Torres-Torres, A. V. Khomenko, J. C. Cheang-Wong, L. Rodríguez-Fernández, A. Crespo-Sosa, and A. Oliver, "Absorptive and refractive nonlinearities by four-wave mixing for Au nanoparticles in ion-implanted silica," Opt. Express 15, 9248-9253 (2007).
    [CrossRef] [PubMed]
  39. G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
    [CrossRef]
  40. A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
    [CrossRef]
  41. V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).
  42. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
    [CrossRef]
  43. S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
    [CrossRef]
  44. C. Torres-Torres and A. V. Khomenko, "Autodifracción vectorial de dos ondas degeneradas en medios con efecto Kerr óptico," Revista Mexicana de Física. 51,162-167 (2005).
  45. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
    [CrossRef]
  46. M. Sheik-Bahae, A. A. Said, Tahi-Huei Wei, D. J. Hagan, E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron.  17-26, 760 (1990).
    [CrossRef]
  47. G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006).
    [CrossRef]
  48. P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
    [CrossRef] [PubMed]
  49. R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
    [CrossRef]

2008

H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008).
[CrossRef]

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman "Thermal on Kerr non linear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express 16, 12987-12994 (2008).
[CrossRef] [PubMed]

C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J.C. Alonso, and A. Oliver, "Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon nitride film," Opt. Express,  16, 18390-18396 (2008)
[CrossRef] [PubMed]

2007

2006

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

J. P. Dowling, "Quantum information: To compute or not to compute?" Nature 439, 919-920 (2006).
[CrossRef] [PubMed]

G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006).
[CrossRef]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
[CrossRef] [PubMed]

2005

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

C. Torres-Torres and A. V. Khomenko, "Autodifracción vectorial de dos ondas degeneradas en medios con efecto Kerr óptico," Revista Mexicana de Física. 51,162-167 (2005).

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

2004

2003

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

2002

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," IEEE Electron. Lett. 38, 1352-1354 (2002).
[CrossRef]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

1999

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999).
[CrossRef]

S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999).
[CrossRef]

1996

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Abbi, S. C.

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

Aguilar-Hernández, J.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Alic, N.

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Alonso, J. C.

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Alonso, J.C.

Andra, A.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Atwater, H. A.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Baets, R.

Bai, Y.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Barbour, J. C.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Biteen, J. S.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

Boyraz, O.

Brongersma, M. L.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Budai, J. D.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Bulutay, C.

H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008).
[CrossRef]

Cazzanelli, M.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Cheang-Wong, J. C.

Chen, L.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Cheng, P.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Cho, C.-H.

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

Choi, C.-.

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Choi, S.-H.

S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999).
[CrossRef]

Claps, R.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

Contreras-Puentes, G.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Couris, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Cowan, A.

Crespo-Sosa, A.

Cruz-Gandarilla, F

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Daldosso, N.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Dimitropoulos, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Dowling, J. P.

J. P. Dowling, "Quantum information: To compute or not to compute?" Nature 439, 919-920 (2006).
[CrossRef] [PubMed]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Dumon, P.

Eisaman, M. D.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

Elliman, R. G.

S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999).
[CrossRef]

Fainman, Y.

Fandiño, J.

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Fedeli, J. M.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Fleischhauer, M.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

Foster, M.

Foster, M. A.

Foster, M.A.

Gaeta, A.

Gaeta, A. L.

Galli, G.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Garrido, B.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Grossman, J. C.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

Han, Y.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

He, T.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Hembree, D. M.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Heng-Qun, G.

G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006).
[CrossRef]

Hernández, S.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Hoyos, E.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Huerta, L.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Ikeda, K.

Indukuri, T.

Jalali, B.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

Jordana, E.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Kawanishi, T.

Khomenko, A. V.

Kim, K.-H.

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Kim, T. Y.

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Kim, T.-W.

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

Kim, V. B.-H.

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

Kimura, K.

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

Kokkinaki, O.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Konstantaki, M.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Koonath, P.

Kornilios, N.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Korovin, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Koudoumas, E.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Kumar, P.

Lalic, N.

N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999).
[CrossRef]

Lebour, Y.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Lee, K. F.

Lewis, N. S.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

Li, J.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Li, Y.

Liang, T.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Linnros, J.

N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999).
[CrossRef]

Lipson, M.

Liu, A.

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Liu, J.

López-Suárez, A.

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J.C. Alonso, and A. Oliver, "Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon nitride film," Opt. Express,  16, 18390-18396 (2008)
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

Martínez, A.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Massou, F.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

Matsuda, H.

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

Mavi, H. S.

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

Meldrum, A.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Mendez-Rojas, M. A.

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

Min, K. S.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Mo, Y.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Monroy, B. M.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Nunes, L.

Ogluzdin, V. E.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Ok, Y.-W.

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Okawachi, Y.

Oliver, A.

Ortiz, A.

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

Panniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Park, N.

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

Park, N.-M.

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Park, S.-J.

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

Pavesi, L.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Pellegrino, P.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Polman, A.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Priem, G.

Prusty, S.

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

Pustovoi, V.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Puzder, A.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

Qian, S.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Qi-Ming, W.

G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Raghunathan, V.

Rangel-Rojo, R.

Rieger, G.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Rodríguez-Fernández, L.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

Sakamoto, T.

Salem, R.

Santana, G.

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

Saperstein, R. E.

Sasagawa, K.

Schmidt, B. S.

Sharping, J.

Sharping, J. E.

Shcheglov, K. V.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Shukla, A. K.

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Spano, R.

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

Sung, G. Y.

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Sung, T.-Y.

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

Tamayo-Rivera, L.

Tchebotareva, A. L.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

Torres-Torres, C.

Tsang, H.

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Tsuchiya, M.

Turner, A. C.

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

Van Thourhout, D.

Wang, S.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Watson, W. H.

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

White, C. W.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Williamson, A. J.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

Withrow, S. P.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

Xu, Q.

Yang, C. M.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

Yildirim, H.

H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008).
[CrossRef]

You, G.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Young, J.

Zhang, K.

Zhang, S.

Zhang, Y.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Zhou, P.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Zhu, H.

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

Zibrov, A. S.

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

APL

V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).

Appl. Phys. Lett.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996).
[CrossRef]

G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006).
[CrossRef]

T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004).
[CrossRef]

T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006).
[CrossRef]

S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Chin. Phys. Lett.

G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006).
[CrossRef]

IEEE Electron. Lett.

R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," IEEE Electron. Lett. 38, 1352-1354 (2002).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991).
[CrossRef]

J. Appl. Phys.

S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999).
[CrossRef]

S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008).
[CrossRef]

J. Lumin.

N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Res. Soc. Symp. Proc.

J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[CrossRef] [PubMed]

J. P. Dowling, "Quantum information: To compute or not to compute?" Nature 439, 919-920 (2006).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005).
[CrossRef] [PubMed]

Opt. Commun.

H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003).
[CrossRef]

P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007).
[CrossRef]

H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008).
[CrossRef]

R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003).
[CrossRef]

Opt. Express

C. Torres-Torres, A. V. Khomenko, J. C. Cheang-Wong, L. Rodríguez-Fernández, A. Crespo-Sosa, and A. Oliver, "Absorptive and refractive nonlinearities by four-wave mixing for Au nanoparticles in ion-implanted silica," Opt. Express 15, 9248-9253 (2007).
[CrossRef] [PubMed]

M.A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon waveguides," Opt. Express 15, 12949-12958 (2007).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman "Thermal on Kerr non linear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express 16, 12987-12994 (2008).
[CrossRef] [PubMed]

C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J.C. Alonso, and A. Oliver, "Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon nitride film," Opt. Express,  16, 18390-18396 (2008)
[CrossRef] [PubMed]

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305-1313 (2002).
[PubMed]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
[CrossRef] [PubMed]

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

A. Cowan, G. Rieger, and J. Young, "Nonlinear transmission of 1.5 mm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004).
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All-optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006).
[CrossRef] [PubMed]

Opt. Express.

P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005).
[CrossRef] [PubMed]

Opt. Mater.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007).
[CrossRef]

Phys. Rev. Lett.

A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002).
[CrossRef] [PubMed]

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999).
[CrossRef]

Physica E

A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008).
[CrossRef]

Revista Mexicana de Física.

C. Torres-Torres and A. V. Khomenko, "Autodifracción vectorial de dos ondas degeneradas en medios con efecto Kerr óptico," Revista Mexicana de Física. 51,162-167 (2005).

Other

M. Sheik-Bahae, A. A. Said, Tahi-Huei Wei, D. J. Hagan, E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron.  17-26, 760 (1990).
[CrossRef]

M. Mayer, SIMNRA User’s Guide, Version 6.0, (Max Planck-Institute für Plasmaphysik, Garching).

R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego 1992).

D. J. Lockwood, Ed., Light Emission in Silicon: From Physics to Devices, (Academic, San Diego, 1998), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Nonlinear optical experimental set up

Fig. 2.
Fig. 2.

RBS spectrum of the annealed film, where the elements present in the sample are shown. We took advantage of the elastic scattering resonance 16O(α,α)16O at 3.045 MeV, which is 25 times larger than its corresponding Rutherford cross section, in order to obtain high sensitivity in the oxygen measurement

Fig. 3.
Fig. 3.

(a) HRTEM micrograph of the silicon-nitride film after the annealed process. The small rounded dark spots correspond to nc-Si. (b) HRTEM micrograph of the as-grown sample.

Fig. 4.
Fig. 4.

PL spectrum of the silicon nitride films before (as-grown) and after the annealing treatment. An enhancement in the PL signal as well as a red-shift is observed after the annealing process.

Fig. 5.
Fig. 5.

Self-diffraction efficiency as a function of the angle φ between planes of polarization of the incident waves.

Fig. 6.
Fig. 6.

Optical transmittance through the as-grown sample (a) transmitted vs. incident irradiance, (b) transmittance as function of incident irradiance.

Fig. 7.
Fig. 7.

Optical transmittance through the annealed sample (a) transmitted vs. incident irradiance, (b) transmittance as function of incident irradiance.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E1±(z)=[J0(Ψ±(1))E1±0+iJ1(Ψ±(1))E2±0] exp (iΨ±(0)α(I)z2) ,
E2±(z)=[J0(Ψ±(1))E2±0iJ1(Ψ±(1))E1±0]exp(iΨ±(0)α(I)z2),
E3±(z)=[iJ1(Ψ±(1))E1±0J2(Ψ±(1))E2±0]exp(iΨ±(0)α(I)z2),
E4±(z)=[iJ1(Ψ±(1))E2±0J2(Ψ±(1))E1±0]exp(iΨ±(0)α(I)z2),
Ψ±(0)=4π2zn0λ [A(E1±2+E2±2)+(A+B)(E12+E22)] ,
ψ±(1)=4π2zn0λ [AE1±E2±*+(A+B)E1E2*] ,
β=αoIs .
I (z)=I0exp(αoz)1+βI0z ,
Is=ω/στ0
αo=σN0,
α (I)=α0 {1+I/Is[1+σr(1+τr)]1+(2+σrτr)I/Is+3σrτr(I/Is)2} ,

Metrics