Abstract

We present an ultra-short distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber. The entire laser is only 8.4 mm in length. The lasing threshold is less than 1 mW. The optical signal-to-noise ratio of the laser output is better than 70 dB. The laser emits two orthogonal polarization modes and generates a beat signal with signal-to-noise ratio of ~70 dB and 3-dB linewidth of ~3 kHz. The laser has longitude mode spacing comparable to the grating bandwidth. This obviates the possibility of mode hopping when the laser is subjected to any external perturbations.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Hill, B. Hodder, J. D. Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 904–907 (2005).
  2. G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007).
    [CrossRef]
  3. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
    [CrossRef]
  4. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18(4), 317–319 (1993).
    [CrossRef] [PubMed]
  5. M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
    [CrossRef]
  6. K. Bohnert, A. Frank, E. Rochat, K. Haroud, and H. Brändle, “Polarimetric fiber laser sensor for hydrostatic pressure,” Appl. Opt. 43(1), 41–48 (2004).
    [CrossRef] [PubMed]
  7. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
    [CrossRef]
  8. Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009).
    [CrossRef]
  9. A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
    [CrossRef]
  10. B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
    [CrossRef] [PubMed]
  11. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
    [CrossRef]
  12. Y. O. Barmenkov, D. Zalvidea, S. T. Peiro, J. L. Cruz, and M. V. Andres, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]

2009 (2)

Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009).
[CrossRef]

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

2008 (2)

2007 (1)

G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007).
[CrossRef]

2006 (1)

2005 (1)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

2004 (2)

1998 (1)

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

1993 (1)

Ames, G. H.

G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007).
[CrossRef]

Andres, M. V.

Barmenkov, Y. O.

Bohnert, K.

Brändle, H.

Chan, H. L. W.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Chen, D.

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[CrossRef]

Cruz, J. L.

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[CrossRef]

Frank, A.

Geng, J.

Guan, B. O.

Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009).
[CrossRef]

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[CrossRef] [PubMed]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Haroud, K.

Hernandez-Cordero, J.

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

Hu, Y.

Jiang, S.

Kaneda, Y.

Kim, B. Y.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18(4), 317–319 (1993).
[CrossRef] [PubMed]

Kim, H. K.

Kim, S. K.

Kirendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[CrossRef]

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Lee, M. L.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Lee, W. J.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Lee, Y. H.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Maguire, J. M.

G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007).
[CrossRef]

Morse, T. F.

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

Park, H. G.

Park, J. S.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Peiro, S. T.

Peyghambarian, N.

Rochat, E.

Rosales-Garia, A.

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

Spiegelberg, C.

Tam, H. Y.

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[CrossRef] [PubMed]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Unlu, M. S.

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

Wang, H. J.

Yun, S. H.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Zalvidea, D.

Zhang, Y.

Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009).
[CrossRef]

B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, “High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber,” Opt. Express 16(5), 2958–2964 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (3)

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Y. Zhang and B. O. Guan, “High sensitivity distributed Bragg reflector fiber laser displacement sensor,” IEEE Photon. Technol. Lett. 21(5), 280–282 (2009).
[CrossRef]

A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, “Single polarization-mode-beating frequency fiber laser,” IEEE Photon. Technol. Lett. 21(8), 537–539 (2009).
[CrossRef]

IEEE Sens. J. (2)

G. H. Ames and J. M. Maguire, “Erbium fiber laser accelerometer,” IEEE Sens. J. 7(4), 557–561 (2007).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8(7), 1161–1172 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

D. J. Hill, B. Hodder, J. D. Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 904–907 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for DBR fiber laser inscription.

Fig. 2
Fig. 2

Transmission spectra of the grating at different lengths.

Fig. 3
Fig. 3

Peak power of the laser versus length of the LR grating.

Fig. 4
Fig. 4

The photograph of the DBR fiber laser.

Fig. 5
Fig. 5

Output spectrum of the DBR fiber laser.

Fig. 6
Fig. 6

Beat signal spectrum of the fiber laser.

Fig. 7
Fig. 7

Laser output power versus pump power.

Fig. 8
Fig. 8

Transmission spectra of two Fabry-Perot cavities with the grating end-to-end spacing of (a) L 0 = 1mm, and (b) L 0 = 9 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ22neffLeff
Leff=L0+leff1+leff2
leff=lgR2atanh(R)

Metrics