Abstract

We report the room temperature electroluminescence (EL) at 1.6 µm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a superlinear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve better efficiency of the device. Thermal enhancement effects observed in temperature dependent EL spectra show the capability of this device to operate at room temperature or above. These detailed studies show that Ge can be a good candidate for a Si compatible light emitting device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, "Silicon microphotonics," Appl. Surf. Sci. 159-160, 8-13 (2000).
    [CrossRef]
  2. J. Liu, X. Sun, D. Pang, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Opt. Express 15, 11272-11277 (2007).
    [CrossRef] [PubMed]
  3. V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
    [CrossRef]
  4. Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
    [CrossRef]
  5. M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
    [CrossRef]
  6. R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993).
    [CrossRef]
  7. X. Sunn, J. Liu, L. C. Kimerling and J. Michel, "Room temperature direct band gap electroluminescence from Ge-on-Si light emitting diode," Opt. Lett. 34, 1198-1200 (2009).
    [CrossRef]
  8. M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
    [CrossRef]
  9. C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
    [CrossRef]
  10. H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).
  11. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
    [CrossRef]

2009

2007

J. Liu, X. Sun, D. Pang, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Opt. Express 15, 11272-11277 (2007).
[CrossRef] [PubMed]

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

2006

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

2004

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

2003

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

2000

L. C. Kimerling, "Silicon microphotonics," Appl. Surf. Sci. 159-160, 8-13 (2000).
[CrossRef]

1993

R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993).
[CrossRef]

Cannon, D. D.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

Cheng, S. L.

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

Chui, C. O.

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Cirlin, G. E.

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Friedman, L.

R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993).
[CrossRef]

Gopalakrishnan, K.

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Griffin, P. B.

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

Griffin, P. G.

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Guo, T. H.

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

Hsu, C. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

Hung, T. A.

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

Ishikawa, Y.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

Kimerling, L. C.

Koch, T. L.

Kuan, C. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

Lee, C. H.

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

Liao, M. H.

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

Lin, C. H.

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

Liu, C. W.

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

Liu, J.

Luan, H. C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

Michel, J.

Nishi, Y.

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

Pang, D.

Peng, Y. H.

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

Plummer, J. D.

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Saraswat, K. C.

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

Soref, R. A.

R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993).
[CrossRef]

Sun, X.

Sunn, X.

Talalaev, V. G.

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Tonkikh, A. A.

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Wada, K.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

Wang, X.

Werner, P.

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Yu, C. Y.

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

Yu, H. Y.

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

Zakharov, N. D.

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004).
[CrossRef]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
[CrossRef]

C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003).
[CrossRef]

Appl. Surf. Sci.

L. C. Kimerling, "Silicon microphotonics," Appl. Surf. Sci. 159-160, 8-13 (2000).
[CrossRef]

IEEE Electron Device Lett.

M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006).
[CrossRef]

H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).

J. Appl. Phys.

M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi A

V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003).
[CrossRef]

Superlattice Microst.

R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Design of the Ge-based light emitting diode. (a) Isometric schematic of the device structure showing the Ge mesa on top of a p-type Si substrate with Al ring contacts. (b) Cross-section schematic of the device structure.

Fig. 2.
Fig. 2.

(a). Electroluminescence spectra of the Ge LED under different applied biases. (b) Current density-to-voltage (J-V) characteristic of the device. The J-V curve exhibits a dependence of 1.21 for voltages greater than 2 V. (c) Integrated luminescence-to-current density L-Jm characteristics of the device. The factor m is 0.94 between 36–250 A/cm2 and 1.48 for current densities greater than 300 A/cm2.

Fig. 3.
Fig. 3.

(a). PL spectra of undoped, n-type 1.5·1018 and 7.5·1018 cm-3 concentrations of Ge. Better radiative efficiency is obtained with higher n-type doping concentration. (b) EL spectra of n-type 1.5·1018 and 7.5·1018 cm-3 concentration Ge devices under the same drive current of 700 A/cm2. A similar emission trend is observed as that for the PL spectra. The evidence of similar spectra shapes suggests the same light emitting mechanism.

Fig. 4.
Fig. 4.

EL spectra measured at various temperatures. Better radiative efficiencies are observed for higher temperatures. Redshifts of the EL peaks at higher temperature are also obtained due to the band gap shrinkage of Ge.

Metrics