Abstract

A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20µsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses

Jun Dong, Michael Bass, and Craig Walters
J. Opt. Soc. Am. B 21(2) 454-457 (2004)

Optical spectroscopy, 1.5μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses

P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, R. Balakrishnaiah, C. K. Jayasankar, Ki-Soo Lim, and V. Lavín
J. Opt. Soc. Am. B 24(9) 2218-2228 (2007)

A new study on bismuth doped oxide glasses

Wenbin Xu, Mingying Peng, Zhijun Ma, Guoping Dong, and Jianrong Qiu
Opt. Express 20(14) 15692-15702 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu and R. Li, “Recent progress in the development of high intensity ultrashort pulse lasers at SIOM,” Chin. Opt. Lett. 5, S1–S4 (2007), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-5-101-S1.
  2. G. Chériaux and J. Chambaret, “Ultra-short high-intensity laser pulse generation and amplification.” Meas. Sci. Technol. 12, 1769–1776 (2001), http://dx.doi.org/10.1088/0957-0233/12/11/303.
  3. G. R. Hays, E. W. Gaul, M. D. Martinez, and T. Ditmire, “Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.” Appl. Opt. 46, 4813–4819 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-21-4813.
    [Crossref] [PubMed]
  4. Z. Jiang, J. Yang, and S. Dai, “Optical spectroscopy and gain properties of Nd3+-doped oxide glasses,” J. Opt. Soc. Am. B 21, 739–743 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=josab-21-4-739.
    [Crossref]
  5. S. E. Stokowski, R. A. Saroyan, and M. J. Weber, “Nd-Doped Laser Glass, Spectroscopy, and Physical Properties.” M-95, Rev. 2, 1 and 2 (Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1981).
  6. L. Kassab, S. Tatumi, C. Mendes, L. Courrol, and N. Wetter, “Optical properties of Nd doped Bi2O3-PbO-Ga2O3 glasses,” Opt. Express 6, 104–108 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-6-4-104.
    [Crossref] [PubMed]
  7. M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
    [Crossref]
  8. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16, 11894–11906 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11894.
    [Crossref] [PubMed]
  9. M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
    [Crossref]
  10. Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
    [Crossref]
  11. B. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  12. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  13. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1
  14. A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
    [Crossref]
  15. J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).
  16. E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
    [Crossref]
  17. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition.” IEEE J. Quantum Electron. QE-12, 102–111(1976).
    [Crossref]
  18. M. B. Saisudha and J. Ramakrishna, “Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses.” Phys. Rev. B 53, 6186–6196 (1996), http://prola.aps.org/pdf/PRB/v53/i10/p6186_1.
    [Crossref]

2008 (1)

2007 (3)

2006 (1)

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

2004 (2)

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Z. Jiang, J. Yang, and S. Dai, “Optical spectroscopy and gain properties of Nd3+-doped oxide glasses,” J. Opt. Soc. Am. B 21, 739–743 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=josab-21-4-739.
[Crossref]

2001 (1)

G. Chériaux and J. Chambaret, “Ultra-short high-intensity laser pulse generation and amplification.” Meas. Sci. Technol. 12, 1769–1776 (2001), http://dx.doi.org/10.1088/0957-0233/12/11/303.

2000 (1)

1999 (1)

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

1996 (1)

M. B. Saisudha and J. Ramakrishna, “Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses.” Phys. Rev. B 53, 6186–6196 (1996), http://prola.aps.org/pdf/PRB/v53/i10/p6186_1.
[Crossref]

1994 (1)

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

1981 (1)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
[Crossref]

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition.” IEEE J. Quantum Electron. QE-12, 102–111(1976).
[Crossref]

1965 (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1

1962 (2)

B. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Abril, M.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Azkargorta, J.

Balda, R.

Bell, M. J. V.

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

Blackburn, D. H.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
[Crossref]

Boulon, G.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Buoncristiani, M.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Campbell, J. H.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Carnall, W. T.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1

Chambaret, J.

G. Chériaux and J. Chambaret, “Ultra-short high-intensity laser pulse generation and amplification.” Meas. Sci. Technol. 12, 1769–1776 (2001), http://dx.doi.org/10.1088/0957-0233/12/11/303.

Chériaux, G.

G. Chériaux and J. Chambaret, “Ultra-short high-intensity laser pulse generation and amplification.” Meas. Sci. Technol. 12, 1769–1776 (2001), http://dx.doi.org/10.1088/0957-0233/12/11/303.

Choi, Ju H.

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Courrol, L.

Dai, S.

Dantas, N.O.

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

Delgado-Torres, A.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Di Bartolo, B.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Ditmire, T.

Ehrmann, P.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Fernández, J.

Fields, P. R.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1

Gaul, E. W.

Hays, G. R.

Iparraguirre, I.

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition.” IEEE J. Quantum Electron. QE-12, 102–111(1976).
[Crossref]

Jiang, Z.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Kassab, L.

Kornienko, A.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Lavín, V.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Li, R.

Margaryan, Alfred

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Margaryan, Ashot

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Martín, I. R.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Martinez, M. D.

McLean, M.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Mendes, C.

Méndez-Ramos, J.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Mironov, V.

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Monte, A. F. G.

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

Myers, J. D.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Ramakrishna, J.

M. B. Saisudha and J. Ramakrishna, “Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses.” Phys. Rev. B 53, 6186–6196 (1996), http://prola.aps.org/pdf/PRB/v53/i10/p6186_1.
[Crossref]

Rodríguez, V. D.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Rodríguez-Mendoza, U. R.

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

Saisudha, M. B.

M. B. Saisudha and J. Ramakrishna, “Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses.” Phys. Rev. B 53, 6186–6196 (1996), http://prola.aps.org/pdf/PRB/v53/i10/p6186_1.
[Crossref]

Saroyan, R. A.

S. E. Stokowski, R. A. Saroyan, and M. J. Weber, “Nd-Doped Laser Glass, Spectroscopy, and Physical Properties.” M-95, Rev. 2, 1 and 2 (Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1981).

Serqueira, E. O.

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

Shi, Frank G.

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Steele, W.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Stokowski, S. E.

S. E. Stokowski, R. A. Saroyan, and M. J. Weber, “Nd-Doped Laser Glass, Spectroscopy, and Physical Properties.” M-95, Rev. 2, 1 and 2 (Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1981).

Suratwala, T.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Tatumi, S.

Thorsness, C.

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

Van Der Veer, Wytze

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Weber, M. J.

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
[Crossref]

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition.” IEEE J. Quantum Electron. QE-12, 102–111(1976).
[Crossref]

S. E. Stokowski, R. A. Saroyan, and M. J. Weber, “Nd-Doped Laser Glass, Spectroscopy, and Physical Properties.” M-95, Rev. 2, 1 and 2 (Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1981).

Wetter, N.

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1

Xu, Z.

Yang, J.

Advances in OptoElectronics 2007 (1)

Ju H. Choi, Alfred Margaryan, Ashot Margaryan, Frank G. Shi, and Wytze Van Der Veer, “Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass,” Advances in OptoElectronics 2007, 1–8 (2007), http://dx.doi.org/10.1155/2007/39892.
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition.” IEEE J. Quantum Electron. QE-12, 102–111(1976).
[Crossref]

Inertial Confinement Fusion Quarterly Report (1)

J. H. Campbell, P. Ehrmann, T. Suratwala, W. Steele, C. Thorsness, and M. McLean, “Properties of and Manufacturing Methods for NIF Laser Glasses.” Inertial Confinement Fusion Quarterly Report  9, 118–119 (1999).

J. Appl. Phys. (2)

M. J. Weber, J. D. Myers, and D. H. Blackburn, “Optical properties of Nd3+ in tellurite and phosphotellutite glasses.” J. Appl. Phys. 52, 2944–2949 (1981), http://link.aip.org/link/?JAPIAU/52/2944/1.
[Crossref]

M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez. “Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods,” J. Appl. Phys. 95, 5271–5279 (2004), http://link.aip.org/link/?JAPIAU/95/5271/1.
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

J. Non-Crystal. Solids (1)

E. O. Serqueira, N.O. Dantas, A. F. G. Monte, and M. J. V. Bell. “J,dd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses.” J. Non-Crystal. Solids 352, 3628–3632 (2006), http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.093.
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Phys. Rev. B (1)

M. B. Saisudha and J. Ramakrishna, “Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses.” Phys. Rev. B 53, 6186–6196 (1996), http://prola.aps.org/pdf/PRB/v53/i10/p6186_1.
[Crossref]

Phys. Status Solidi A (1)

A. A. Kaminskii, G. Boulon, M. Buoncristiani, B. Di Bartolo, A. Kornienko, and V. Mironov, “Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |<‖U(t)‖>|2 for Nd3+ ions.” Phys. Status Solidi A 141, 471–494 (1994).
[Crossref]

Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. (1)

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. I. Pr3 +, Nd3 +, Er3 +, Tm3 +, and Yb3 +.” J. Chem. Phys. 42, 3797–3806 (1965), http://link.aip.org/link/?JCPSA6/42/3797/1

Other (2)

S. E. Stokowski, R. A. Saroyan, and M. J. Weber, “Nd-Doped Laser Glass, Spectroscopy, and Physical Properties.” M-95, Rev. 2, 1 and 2 (Lawrence Livermore National Laboratory, University of California, Livermore, CA, 1981).

G. Chériaux and J. Chambaret, “Ultra-short high-intensity laser pulse generation and amplification.” Meas. Sci. Technol. 12, 1769–1776 (2001), http://dx.doi.org/10.1088/0957-0233/12/11/303.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Room temperature optical absorption spectra of Nd3+-doped NPS glass (size: 10mm×10mm×3mm) and commercial Nd3+-doped aluminum-phosphate laser glass LG-770. All transitions start from 4I9/2 level to the indicated levels. The fitted refractive index dispersion curve of the NPS glass (red in color) is also shown.

Fig. 2.
Fig. 2.

(a) Room temperature emission spectrum of NPS glass under diode laser excitation at 808nm. (b) Nd3+ energy level diagram for Nd3+ doped NPS glass obtained from room temperature absorption and emission spectra. (c) Luminescence decay curve of 4F3/2 level of Nd3+ ions in NPS glass. (The sample sizes: 5mm×5mm×1mm)

Fig. 3.
Fig. 3.

Emission spectra for 4F3/24I11/2 level of Nd3+ ion in laser glasses at room temperature (The sample sizes: 5mm×5mm×1mm).

Fig. 4.
Fig. 4.

(a) Laser oscillation at 1062 nm in the Nd3+-doped NPS glass. (b) Measured threshold and slope efficiency. (The sample sizes: 20mm×20mm×10mm)

Tables (3)

Tables Icon

Table 1. Measured and calculated oscillator strengths for NPS glass

Tables Icon

Table 2 Calculated radiative transition rates AJ, luminescence branching ratios β and corresponding radiative lifetime τrad for Nd3+ in NPS glass

Tables Icon

Table 3 Optical Properties of NPS glass

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

fmeas=mc2πe2N0 κ(λ)dλλ2
κ(λ)=2.303log(I0I)l
fcal=fcaled=8π2mc3hλ(2J+1)×(n2+2)29n×t=2,4,6Ωt4fN(SL)JU(t)4fN(SL)J2
δrms=[(fcalfmeas)2NbandsNp]
A(JJ)=64π4e23h(2J+1)λp3·n(n2+2)29t=2,4,6Ωt4F32U(t)4IJ2
Δλeff=I(λ)dλImax
τrad=1JArad(J,J)
β(4F324IJ)=A(4F324IJ)JA(4F324IJ)
σemi=λp48πcn2ΔλeffA[(4F324IJ)]

Metrics