Abstract

Quasi-phase matched second-harmonic generation at 532 nm is demonstrated in a channel waveguide that is written in bulk fused silica using a femtosecond laser. The second-order nonlinear grating is fabricated using uniform thermal poling followed by periodic erasure inside an e-beam deposition system caused, by what we believe to be, x-rays. A SHG conversion efficiency of 2 × 10-5 %/W-cm2 was obtained for a 1 cm long device, corresponding to an effective nonlinear coefficient of 0.0075 pm/V.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. A. C. Liu, J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in a silica channel waveguide," Opt. Lett. 19, 466-468 (1994).
    [CrossRef] [PubMed]
  3. O. Tarasenko and W. Margulis, "Electro-optic fiber modulation in a Sagnac inteferometer," Opt. Lett. 32, 1356-1358 (2007).
    [CrossRef] [PubMed]
  4. V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997).
    [CrossRef]
  5. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
    [CrossRef] [PubMed]
  6. P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
    [CrossRef]
  7. P. G. Kazansky, A. Kamal, and P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993).
    [CrossRef] [PubMed]
  8. J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
    [CrossRef]
  9. S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
    [CrossRef]
  10. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
    [CrossRef] [PubMed]
  11. H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
    [CrossRef]
  12. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, "Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide," Opt. Express 13, 7091-7096 (2005).
    [CrossRef] [PubMed]
  13. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, "Planar glass devices for efficient periodic poling," Opt. Express 13, 8514-8519 (2005).
    [CrossRef] [PubMed]
  14. R. Schineller, R. P. Flam and D. W. Wilmot, "Optical waveguides formed by proton irradiation of fused silica," J. Opt. Soc. Am. 58, 1171-1176 (1968).
    [CrossRef]
  15. J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991).
    [CrossRef]
  16. K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  17. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly-written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  18. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three dimensional photonic devices fabricated in glass by use of a femotosecond laser oscillator, Opt. Lett. 30, 1060-1062 (2005).
    [CrossRef] [PubMed]
  19. G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, "A waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling," Opt. Lett. 31,739-741 (2006).
    [CrossRef] [PubMed]
  20. Gaungyu Li, K. A.  Winick, Ali Said, Mark Dugan and Phillipe Bado, "Nonlinear Optical Waveguide Devices Based on Femtosecond Laser Direct Writing and Thermal Poling in Fused Silica," OSA Frontiers in Optics Annual Meeting, Tucson, Arizona, October 16-20 (2005), post-deadline paper PDP-B7.
  21. F. P. Mezzapesa, I. C. S. Carvalho, C. Cortari, P. G. Kazansky, J. S. Wilkinson, and G. Chen, "Voltage-assisted cooling: a new route to enhance?(2) during thermal poling," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America 2005), paper CMW7.
  22. H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
    [CrossRef]
  23. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788, 1996.
    [CrossRef] [PubMed]
  24. R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
    [CrossRef]
  25. L. Gerward, "X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon," J. Phys. B. 14, 3389-3395 (1981).
    [CrossRef]
  26. R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974).
    [CrossRef]
  27. T. E. Everhart an P. H. Hoff, "Determination of kilovolt electron energy dissipation vs penetration distance in solid materials," J. Appl. Phys. 42, 5837-5846 (1971).
    [CrossRef]
  28. A. Yariv,Optical Electronics in Modern Communications, 5th Ed. (Oxford 1997), Chap. 8.
  29. T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).
  30. J. M. Jewell, "Thermooptic coefficients of some standard reference material glasses," J. Am. Ceram. Soc. 74, 1689-1691 (1991).
    [CrossRef]
  31. H. An, S. Fleming, B. W. McMillen, K. P. Chen, and D. Snoke, "Thermal poling induced second-order nonlinearity in femtosecond laser-modified fused silica," Appl. Phys. Lett. 93, 061115-1 - 061115-3 (2008).
    [CrossRef]
  32. J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
    [CrossRef]
  33. C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
    [CrossRef]

2007 (2)

O. Tarasenko and W. Margulis, "Electro-optic fiber modulation in a Sagnac inteferometer," Opt. Lett. 32, 1356-1358 (2007).
[CrossRef] [PubMed]

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

2006 (1)

2005 (4)

2004 (1)

H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

2003 (4)

2002 (1)

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

1999 (1)

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

1997 (2)

V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997).
[CrossRef]

K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

1996 (1)

1994 (3)

A. C. Liu, J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in a silica channel waveguide," Opt. Lett. 19, 466-468 (1994).
[CrossRef] [PubMed]

J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
[CrossRef]

1993 (1)

1991 (3)

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[CrossRef] [PubMed]

J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991).
[CrossRef]

J. M. Jewell, "Thermooptic coefficients of some standard reference material glasses," J. Am. Ceram. Soc. 74, 1689-1691 (1991).
[CrossRef]

1983 (1)

T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).

1981 (1)

L. Gerward, "X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon," J. Phys. B. 14, 3389-3395 (1981).
[CrossRef]

1974 (1)

R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974).
[CrossRef]

1971 (1)

T. E. Everhart an P. H. Hoff, "Determination of kilovolt electron energy dissipation vs penetration distance in solid materials," J. Appl. Phys. 42, 5837-5846 (1971).
[CrossRef]

1968 (1)

An, H.

H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Bado, P.

Beermann, J.

J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
[CrossRef]

Bell, J.

J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991).
[CrossRef]

Blum, R.

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

Bozhevolnyi, S.

J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
[CrossRef]

Brueck, S. R. J.

Calvez, A. L.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Chao, S.

Chen, H.-Y.

Corbari, C.

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

Dell, J. M.

J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
[CrossRef]

Deparis, O.

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

Digonnet, J. F.

Dong, L.

P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
[CrossRef]

Ducasse, A.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Dugan, M.

Fage-Pedersen, J.

J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, "Planar glass devices for efficient periodic poling," Opt. Express 13, 8514-8519 (2005).
[CrossRef] [PubMed]

J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
[CrossRef]

Fargin, E.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Flam, R. P.

Flem, G. L.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Fleming, S.

H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Florea, C.

Freysz, E.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Fujimoto, J. G.

Gerward, L.

L. Gerward, "X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon," J. Phys. B. 14, 3389-3395 (1981).
[CrossRef]

Greening, J. R.

R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974).
[CrossRef]

Ippen, E. P.

Ironside, C. N.

J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991).
[CrossRef]

Jacobsen, R.

Jewell, J. M.

J. M. Jewell, "Thermooptic coefficients of some standard reference material glasses," J. Am. Ceram. Soc. 74, 1689-1691 (1991).
[CrossRef]

Joyce, M. J.

J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
[CrossRef]

Kamal, A.

Kazansky, P. G.

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
[CrossRef]

P. G. Kazansky, A. Kamal, and P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993).
[CrossRef] [PubMed]

Kino, G. S.

Klappauf, B. G.

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

Kowalevicz, A. M.

Kristensen, M.

Laurell, F.

Li, G.

Lin, C.-L.

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Lin, Y.-H.

Liu, A. C.

Margulis, W.

Millar, R. H.

R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974).
[CrossRef]

Mills, J. D.

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

Minoshima, K.

Miura, K.

K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Montant, S.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Nazabal, V.

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

Niu, H.

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, "Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide," Opt. Express 13, 7091-7096 (2005).
[CrossRef] [PubMed]

Pedersen, K.

J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
[CrossRef]

Poumellec, B.

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

Pruneri, V.

V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Russell, P. S. J.

P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
[CrossRef]

P. G. Kazansky, A. Kamal, and P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993).
[CrossRef] [PubMed]

Said, A. A.

Schineller, R.

Sharma, V.

Shih, C. T.

S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, "Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide," Opt. Express 13, 7091-7096 (2005).
[CrossRef] [PubMed]

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Stone, G. O.

J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
[CrossRef]

Sue, J.-S.

Tarasenko, O.

Toyoda, T.

T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).

Truhins, A.

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

Wang, Z.-W.

Wilmot, D. W.

Winick, K. A.

Yabe, M.

T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).

Yang, Y.-H.

S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, "Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide," Opt. Express 13, 7091-7096 (2005).
[CrossRef] [PubMed]

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

Zhao, S.

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999).
[CrossRef]

H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005).
[CrossRef]

K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002).
[CrossRef]

Electron. Lett. (3)

J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991).
[CrossRef]

P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994).
[CrossRef]

V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. M. Jewell, "Thermooptic coefficients of some standard reference material glasses," J. Am. Ceram. Soc. 74, 1689-1691 (1991).
[CrossRef]

J. Appl. Phys. (2)

T. E. Everhart an P. H. Hoff, "Determination of kilovolt electron energy dissipation vs penetration distance in solid materials," J. Appl. Phys. 42, 5837-5846 (1971).
[CrossRef]

T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).

J. Lightwave Technol. (1)

J. Luminescence (1)

R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974).
[CrossRef]

J. Phys. B. (1)

L. Gerward, "X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon," J. Phys. B. 14, 3389-3395 (1981).
[CrossRef]

Opt. Commun. (1)

J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three dimensional photonic devices fabricated in glass by use of a femotosecond laser oscillator, Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, "A waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling," Opt. Lett. 31,739-741 (2006).
[CrossRef] [PubMed]

H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[CrossRef] [PubMed]

A. C. Liu, J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in a silica channel waveguide," Opt. Lett. 19, 466-468 (1994).
[CrossRef] [PubMed]

O. Tarasenko and W. Margulis, "Electro-optic fiber modulation in a Sagnac inteferometer," Opt. Lett. 32, 1356-1358 (2007).
[CrossRef] [PubMed]

P. G. Kazansky, A. Kamal, and P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993).
[CrossRef] [PubMed]

H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003).
[CrossRef] [PubMed]

W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788, 1996.
[CrossRef] [PubMed]

Proc. SPIE (1)

J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994).
[CrossRef]

Other (4)

Gaungyu Li, K. A.  Winick, Ali Said, Mark Dugan and Phillipe Bado, "Nonlinear Optical Waveguide Devices Based on Femtosecond Laser Direct Writing and Thermal Poling in Fused Silica," OSA Frontiers in Optics Annual Meeting, Tucson, Arizona, October 16-20 (2005), post-deadline paper PDP-B7.

F. P. Mezzapesa, I. C. S. Carvalho, C. Cortari, P. G. Kazansky, J. S. Wilkinson, and G. Chen, "Voltage-assisted cooling: a new route to enhance?(2) during thermal poling," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America 2005), paper CMW7.

A. Yariv,Optical Electronics in Modern Communications, 5th Ed. (Oxford 1997), Chap. 8.

H. An, S. Fleming, B. W. McMillen, K. P. Chen, and D. Snoke, "Thermal poling induced second-order nonlinearity in femtosecond laser-modified fused silica," Appl. Phys. Lett. 93, 061115-1 - 061115-3 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Maker fringe data from thermally poled fused silica.

Fig. 2.
Fig. 2.

Measured refractive index profile (at 658 nm) of femtosecond laser written waveguide in fused silica.

Fig. 3.
Fig. 3.

Computed mode field contour and effective indices at (a) 1064 nm and (b) 532 nm for femotosecond laser-written waveguide in fused silica.

Fig. 4.
Fig. 4.

SEM image of a STS etched silicon grating.

Fig. 5.
Fig. 5.

Microscope images of the HF etched glass sample after periodic erasure using e-beam deposition process. (a) 42 μm period, (b) 400 μm period.

Fig. 6.
Fig. 6.

SHG measurement by scanning across the 400 μm period χ (2) grating fabricated by periodic erasure using e-beam deposition process.

Fig. 7.
Fig. 7.

Measured average SHG power vs. average fundamental power at 1064 nm for both TM and TE polarized fundamental beams.

Fig. 8.
Fig. 8.

Thermal tuning of the phase matching condition in the waveguide QPM-SHG device in bulk fused silica.

Tables (1)

Tables Icon

Table 1. Dispersion of fused silica substrate and computed waveguide mode effective indices at 1064nm and 532nm

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δk=2πN2ωλf/222πNωλf2πmΛ=0
(px(t)py(t)pz(t))=(0000d310000d3100d31d31d33000)(ex2(t)ey2(t)ez2(t)2ey(t)ez(t)2ex(t)ez(t)2ex(t)ey(t))
P2ω(t)=8π2deff2L2Nω2N2ωcε0λf2 Pω2(t)Aeff sin2(ΔKL/2)(ΔKL/2)2
Aeff=(∫∫Eω2(x,z)dxdz)2(∫∫E2ω2(x,z)dxdz)∫∫Eω2(x,z)E2ω(x,z)dxdz2
deff=1mπ ∫∫Eω2(x,z)d(x,z)E2ω(x,z)dxdz∫∫Eω2(x,z)E2ω(x,z)dxdz
Pω(t)=Pωpeakexp(t22σ2)
σe=22σ
P2ω(t)=P2ωpeakexp(t2σ2)
PωavgRPω(t)dt=Pωpeak2πσ2R
P2ωavgRP2ω(t)dt=Pωpeak2πσ2R
P2ωpeak(Pωpeak)2=2πσR P2ωavg(Pωavg)2
η=100P2ωpeak(t)/Pωpeak(t)Pωpeak(t)/L2=100π2σeRP2ωavg(Pωavg)2L
=8π2deff2Nω2N2ωcωε0λf2Aeffsin2(ΔkL/2)(ΔkL/2)2
Δk(T)=2πN2ω(T)λf/222πNω(T)λf/22πmΛ(T)
dΔk(T)dT=2πλf/2dN2ω(T)dT22πλfdNω(T)dT+2πΛ2(T)dΛ(T)dT
2πλf/2dn2ω(T)dT2πλfdnω(T)dT+2πΛ2(T)dΛ(T)dT
dΔk(T)dT2πλf/2α(λf/2,T)22πλf/2α(λf,T)+2πΛ(T)β(T)
α(λ,T)=dn(λ,T)dT
β(T)=1Λ(T) dΛ(T)dT

Metrics