Abstract

Surface plasmons are electromagnetic waves originating from electrons and light oscillations at metallic surfaces. Since freely propagating light cannot be coupled directly into surface-plasmon modes, a compact, semiconductor electrical device capable of generating SPs on the device top metallic surface would represent an advantage: not only SP manipulation would become easier, but Au-metalized surfaces can be easily functionalized for applications. Here, we report a demonstration of such a device. The direct proof of surface-plasmon generation is obtained with apertureless near-field scanning optical microscopy, which detects the presence of an intense, evanescent electric field above the device metallic surface upon electrical injection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
    [CrossRef]
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
    [CrossRef]
  4. F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
    [CrossRef]
  5. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
    [CrossRef]
  6. F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
    [CrossRef]
  7. R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
    [CrossRef]
  8. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  10. K. F. MacDonald, Z. L. S’amson, M. I. Stockman, and N. I. Zheludev, "Ultrafast plasmonics," Nat. Photonics 3, 53-58 (2009).
  11. A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
    [CrossRef]
  12. J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
    [CrossRef] [PubMed]
  13. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  14. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
    [CrossRef]
  15. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
    [CrossRef]
  16. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
    [CrossRef]
  17. J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008).
    [CrossRef]
  18. A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
    [CrossRef]
  19. The finite elements solver "ComsolMultiphysics" has been employed for the simulations. Bloch-periodic boundary conditions where implemented.
  20. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
    [CrossRef] [PubMed]
  21. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007).
    [CrossRef] [PubMed]
  22. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, and A. G. D. E. H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2007).
    [CrossRef]
  23. O. Demichel, L. Mahler, t. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosinuas, "Surface plasmon photonic structures in terahertz quantum cascade lasers." Opt. Express 14, 5335-5345 (2006).
    [CrossRef] [PubMed]
  24. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
    [CrossRef] [PubMed]
  25. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
    [CrossRef] [PubMed]
  26. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
    [CrossRef]
  27. N. Yu, L. Diehl, E. Cubukcu, C. Pflgl, D. Bour, S. Corzine, J. Zhu, G. Hofler, K. B. Crozier, and F. Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express 15, 13227-13235 (2007).
    [CrossRef] [PubMed]
  28. V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
    [CrossRef]
  29. J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  30. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
    [CrossRef]

2009 (1)

K. F. MacDonald, Z. L. S’amson, M. I. Stockman, and N. I. Zheludev, "Ultrafast plasmonics," Nat. Photonics 3, 53-58 (2009).

2008 (8)

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008).
[CrossRef]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

2007 (7)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

N. Yu, L. Diehl, E. Cubukcu, C. Pflgl, D. Bour, S. Corzine, J. Zhu, G. Hofler, K. B. Crozier, and F. Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express 15, 13227-13235 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007).
[CrossRef] [PubMed]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, and A. G. D. E. H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2007).
[CrossRef]

J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
[CrossRef] [PubMed]

2006 (3)

O. Demichel, L. Mahler, t. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosinuas, "Surface plasmon photonic structures in terahertz quantum cascade lasers." Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

2004 (4)

J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
[CrossRef]

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
[CrossRef]

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003 (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
[CrossRef]

1999 (1)

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

Austin, D.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Bachelot, R.

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
[CrossRef]

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Bahriz, M.

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef]

Beaudoin, G.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Belkin, M. A.

Bergman, D. J.

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Berini, P.

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
[CrossRef]

Boccara, A. C.

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
[CrossRef]

Bour, D.

Bousseksou, A.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Capasso, F.

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
[CrossRef]

Cockburn, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Colombelli, R.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Corzine, S.

Crozier, K. B.

Cubukcu, E.

De Wilde, Y.

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
[CrossRef]

Demichel, O.

Dereux, A.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef]

Devaux, E.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
[CrossRef] [PubMed]

Diehl, L.

Ditlbacher, H.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef]

Ebbesen, T.W.

Fan, J. A.

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Galler, N.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Garca-Vidal, F. J.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Garcia-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Genet, C.

Gleyzes, P.

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
[CrossRef]

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
[CrossRef]

Gonzlez, M. U.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Gray, S. K.

J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008).
[CrossRef]

Greffet, J. J.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Hofler, G.

Hohenau, A.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Hu, Q.

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Khanna, S.

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Krysa, A.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Krysa, A. B.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Kumar, S.

Lachab, M.

Laluet, J. Y.

Largeau, L.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Lee, A. W. M.

Leitner, A.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Lemoine, P. A.

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Linfield, A. G. D. E. H.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. S’amson, M. I. Stockman, and N. I. Zheludev, "Ultrafast plasmonics," Nat. Photonics 3, 53-58 (2009).

Mahler, L.

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Markey, L.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Mart’in-Moreno, A. I. F.-D. L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

Mart’in-Moreno, L.

J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Martn-Moreno, L.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Mauguin, O.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Montgomery, J. M.

J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008).
[CrossRef]

Moreau, V.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Mulet, J. P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
[CrossRef]

Painter, O. J.

Palomo, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Patriarche, G.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Perahia, R.

Pflgl, C.

Qin, Q.

Radko, I. P.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

Roberts, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Rodrigo, S. G.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Royer, P.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Sagnes, I.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Sirtori, C.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
[CrossRef]

Smith, D. R.

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Weeber, J. C.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
[CrossRef] [PubMed]

Wikramasynghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
[CrossRef]

Williams, B. S.

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

Wilson, L.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Wilson, L. R.

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

Wurtz, G.

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Yu, N.

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
[CrossRef]

Zhu, J.

Appl. Phys. Lett. (4)

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004).
[CrossRef]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007).
[CrossRef]

Electron. Lett. (1)

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (1)

G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999).
[CrossRef]

Microsc. Microanal. Microstruct. (1)

R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004).
[CrossRef]

Nat. Photonics (3)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008).
[CrossRef]

K. F. MacDonald, Z. L. S’amson, M. I. Stockman, and N. I. Zheludev, "Ultrafast plasmonics," Nat. Photonics 3, 53-58 (2009).

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008).
[CrossRef]

Nat. Phys. (1)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007).
[CrossRef]

Nature (1)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006).
[CrossRef] [PubMed]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef]

Opt. Express (7)

J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007).
[CrossRef] [PubMed]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007).
[CrossRef] [PubMed]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, and A. G. D. E. H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2007).
[CrossRef]

O. Demichel, L. Mahler, t. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosinuas, "Surface plasmon photonic structures in terahertz quantum cascade lasers." Opt. Express 14, 5335-5345 (2006).
[CrossRef] [PubMed]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflgl, D. Bour, S. Corzine, J. Zhu, G. Hofler, K. B. Crozier, and F. Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express 15, 13227-13235 (2007).
[CrossRef] [PubMed]

Opt. Photonics News (1)

A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008).
[CrossRef]

Phys. Rev. B (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
[CrossRef]

J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008).
[CrossRef]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001).
[CrossRef]

Science (1)

J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other (2)

The finite elements solver "ComsolMultiphysics" has been employed for the simulations. Bloch-periodic boundary conditions where implemented.

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Device scheme and modeling of the losses and emission wavelength. (a) Schematic cross section of the investigated waveguide system, which is considered infinite in the y-direction. The thicknesses are given for the case of a λ = 7.5 μm QC laser in the In-GaAs/AlInAs system. (b) Calculated wavelength of modes #1 and #2 as a function of the grating DC for a grating period Λ = 1.2 μm. DC=0% corresponds to no metallization on the device top surface. DC=100% corresponds to full, unpatterned metallization. Inset: calculated 1D waveguide modes for the two extreme cases of DC=0% and DC=100%. (c) Calculated losses per unit of length for modes #1 and #2 as a function of the grating duty cycle (DC). The losses of mode #2 are stable for almost all DC values. The refractive indexes of the layers composing the QC laser and used for the calculation are: n active-region = 3.269 + i * 6.72×10-5, n InP-substrate = 3.055 + i * 2.738×10-4, n InGaAs-cladding = 3.345 + i * 2.342×10-4, and ngold = 7.8 + i * 54.6

Fig. 2.
Fig. 2.

Electromagnetic field distribution of the symmetric and anti-symmetric modes. Field plots of modes #1 and #2 for different grating duty cycles. The square modulus of E z is shown. Mode #1 (top panels) is localized below the regions with no top metallization, while mode #2 (bottom panels) is localized below the metallic fingers. Panels (a) and (f) show the extreme cases of air-guided and pure surface-plasmon modes, respectively. In this case the modes are degenerate and therefore we show only one field plot. Panel (b) and panel (d) show that mode #1 is gradually pulled towards the metal with increasing duty cycle. The 1D cross-sections on the side (black lines) show that the maximum of the electric field shifts towards the metal-semiconductor interface with increasing DC. Panels (c) and (e) show the very different behavior of mode #2. With increasing duty cycles, the mode is not attracted towards the metal interface. The 1D cross-sections show in fact that - even at DC=83% - the maximum of the electric field is still localized in the active region, and not at the metal-semiconductor interface. Counter intuitively, it looks like mode #2 experiences confinement by air-claddings, although the DC is so high that almost the whole top surface is metalized.

Fig. 3.
Fig. 3.

Intuitive physical explanation of the loss-reduction effect. Schematic close-up of the metal-semiconductor interface of a surface-plasmon waveguide. The system is considered infinite in the y direction (x,y,z directions are defined as in Fig. 2). (a) The case of an unpatterned, continuous metal surface. If mirrors are placed at the left and right edges of the structure, a Fabry-Perot resonator is present and a standing surface-plasmon wave appears. The z component of such a wave is plotted in color scale, together with the surface charge density responsible for the SP. The corresponding charge oscillation is indicated by the dotted curved black arrows. The vertical white dotted lines mark the position of the nodal lines for E z . Note: the charge oscillation always takes place across the nodal lines. (b), (c) The case of a 1 st order grating patterned in the top metal surface only. A symmetric and an anti-symmetric mode appear. The symmetry is taken with respect to the center of the air slit. The symmetric mode (mode #1) exhibits nodal lines below the metallic fingers (panel (b)). The charge oscillation naturally takes place within the metallic fingers (dotted curved black arrows). The anti-symmetric mode (mode #2, panel (c)) on the other hand exhibits a nodal line between the metallic fingers. Naturally the charge oscillation should take place across the finger (dotted curved red arrow), but this is no more possible since the fingers are separated. The charges are therefore forced to oscillate within the metallic fingers but -for symmetry arguments - two points of zero electric field must exist at the metal surface. In this case however, the charge oscillation cannot be associated to a nodal line, since the wavelength is fixed. The anti-symmetric optical mode must accommodate this additional constraint: this is the physical mechanism underlying its anomalous behavior at very high duty-cycle values.

Fig. 4.
Fig. 4.

Spectral and laser threshold characterizations. (a) SEM image of a typical device. The electric current is injected into the device active region, then through the substrate via the patterned metallic top contact. A layer of Si x N y is deposited on the whole sample -except the device top surface - for electrical insulation. (b) Typical laser spectra at T = 240K, 280K and 300K for two devices with different grating periods (black and red curves, respectively). The spectra are plotted in reduced frequency Λ/λ. Comparison with the band-structure simulations allows us to assign the room-temperature (RT) emission at Λ/λ = 0.157 to mode #1, and the one at Λ/λ = 0.159 to mode #2. (c) Threshold current densities as a function of the heat-sink temperature for a typical un-patterned surface-plasmon QC laser (red), for a 50% duty-cycle (blue) and for a 0% duty-cycle (dark grey) surface-plasmon DFB laser fabricated from the same epitaxial material. The dotted lines are exponential fits to the points. The data presented for the 50% DC device refer to mode #2, but we did not find much difference in threshold between mode #1 and mode #2. We believe this is due to higher than expected material-losses, which - for a 50% DC - reduce the loss difference between the two modes. Initial measurements on 70% DC devices (data not shown) indicate that they lase only on mode #2, in agreement with the theory which predicts the largest loss difference between the modes at 80% DC. Inset: Typical single mode emission of a DFB device in log-lin scale. A side-band suppression ratio of at least 30 dB is obtained.

Fig. 5.
Fig. 5.

Near-field characterizations. Apertureless near-field optical microscopy (a-NSOM) survey of the field distribution at the surface of two surface plasmon DFB lasers. The top row reports the results for a device operating on mode #1 (Λ/λ = 0.157), while the bottom row focuses on a device lasing on mode #2 (Λ/λ = 0.159). (a),(b): AFM topography of the two samples. (c),(d): a-NSOM images recorded simultaneously with the AFM images of panels (a) and (b). The demodulation is performed at the tip oscillation frequency. The comparison with the AFM images shows that when the laser operates on mode #2 the electric field is localised on the top metal-air interface. (e),(f): Vertical cross-sections in the xz plane (axes definition at the bottom left) of the a-NSOM signal corresponding to the white dotted lines in panels (c) and (d). The grating metallic fingers are indicated by the yellow semi-transparent rectangles. The maximum of the electric field is located at the semiconductor-air interface or at the metal-air interface, for lasers operating on mode #1 or mode #2, respectively. (g),(h): Numerical simulations corresponding to the measurements reported in panels (e), (f). The value of ∣ E z 2 is reported. The laser operating at Λ/λ = 0.157 exhibits the electric field maximum in the gaps between the metallic fingers. In contrast, the device lasing at Λ/λ = 0.159 exhibits an evanescent electric field onto the metallic fingers, with a confinement decay length of ≈ 300 nm in the z-direction. The agreement between the theory and the a-NSOM experimental measurements is excellent.

Metrics