Abstract

We present transmission enhancement of ultraslow light in an inhomogeneously broadened spectral hole-burning solid medium by using precedent dummy light. The function of the dummy light is to burn a half-depth narrow spectral hole in an optically shelved solid system and to maintain the system optically transparent to the probe light, where the probe must experiences ultraslow group velocity due to the narrow spectral hole. The observed transmission increase is as high as 7 times compared with self-induced ultraslow light [J. Hahn and B. S. Ham, Opt. Express 16, 16723 (2008)], where the transmission enhancement is equivalent to 105 amplification considering an optical depth of d = 10.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
    [CrossRef]
  2. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
    [CrossRef] [PubMed]
  3. S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
    [CrossRef]
  4. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002).
    [CrossRef]
  5. M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
    [CrossRef]
  6. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  7. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  8. S. Haroche, and J.-M. Raimond, Exploring the Quantum, (Oxford, 2006).
  9. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
    [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  11. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
    [CrossRef] [PubMed]
  12. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  13. R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
    [CrossRef]
  14. A. A. Juarez, R. Vilaseca, Z. Zhu, and D. J. Gauthier, “Room-temperature spectral hole burning in an engineered inhomogeneously broadened resonance,” Opt. Lett. 33(20), 2374–2376 (2008).
    [CrossRef] [PubMed]
  15. R. M. Macfarlane, and R. M. Shelby, “Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, Amsterdam, 1987).
  16. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008).
    [CrossRef] [PubMed]
  17. B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
    [CrossRef] [PubMed]
  18. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
    [CrossRef]
  19. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
    [CrossRef]
  20. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
    [CrossRef]
  21. For the measurement of inhomogeneous broadening in 0.05 at. % Pr:Y2SiO5, see also Q-Y. He et al., “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystal,” Phys. Rev. B 73, 195124 (2006).

2008

2007

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

2005

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[CrossRef]

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

2004

2003

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2002

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

1998

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
[CrossRef]

1995

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
[CrossRef]

1993

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

André, A.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Bajcsy, M.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Chang, S.-W.

Chang-Hasnain, C. J.

Chuang, S.-L.

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
[CrossRef]

Croci, M.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
[CrossRef]

Gauthier, D. J.

A. A. Juarez, R. Vilaseca, Z. Zhu, and D. J. Gauthier, “Room-temperature spectral hole burning in an engineered inhomogeneously broadened resonance,” Opt. Lett. 33(20), 2374–2376 (2008).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Hahn, J.

Ham, B. S.

J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008).
[CrossRef] [PubMed]

B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008).
[CrossRef] [PubMed]

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[CrossRef]

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
[CrossRef]

Holliday, K.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

Juarez, A. A.

Kim, M. S.

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
[CrossRef]

Ku, P.-C.

Kurizki, G.

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Li, T.

Lukin, M. D.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
[CrossRef]

Megret, P.

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Moiseev, S. A.

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[CrossRef]

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Odeurs, J.

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Palinginis, P.

Paternostro, M.

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
[CrossRef]

Petrosyan, D.

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002).
[CrossRef]

Rebane, A.

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Rouget, V.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
[CrossRef]

Shakhmuratov, R. N.

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

Vauthey, E.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

Vilaseca, R.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wang, H.

Wild, U. P.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Zhu, Z.

A. A. Juarez, R. Vilaseca, Z. Zhu, and D. J. Gauthier, “Room-temperature spectral hole burning in an engineered inhomogeneously broadened resonance,” Opt. Lett. 33(20), 2374–2376 (2008).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zibrov, A. S.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[CrossRef]

D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002).
[CrossRef]

M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003).
[CrossRef]

Phys. Rev. B

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993).
[CrossRef]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995).
[CrossRef]

Phys. Rev. Lett.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002).
[CrossRef] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other

S. Haroche, and J.-M. Raimond, Exploring the Quantum, (Oxford, 2006).

For the measurement of inhomogeneous broadening in 0.05 at. % Pr:Y2SiO5, see also Q-Y. He et al., “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystal,” Phys. Rev. B 73, 195124 (2006).

R. M. Macfarlane, and R. M. Shelby, “Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, Amsterdam, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Partial energy level diagram of Pr:YSO. (b) Schematic of light pulse propagation. (c) Light pulse sequence. (d) Schematic of coherently confined atom selection and inhomogeneous spectroscopoy at 5 K. Atom preparation for P is controlled by frequency selection of R1 and R2. Each set of atoms is continuously spanned in an optically inhomogeneous broadening of ~4GHz [21]: Blue and red colored curves indicate two different sets of atoms detuned by δ. If δ is greater than either laser jitter or Rabi frequency of R1 or R2, that atom group becomes inactive to the slow light of P. (e) Schematic of a dummy light-induced spectral hole tunnel, where the probe pulse P experiences reduced absorption. Light power of R1, R2, P, and A, respectively, is 33, 39, 1.4, and 40 mW.

Fig. 2
Fig. 2

Coherent control of ultraslow light with dummy light: Transmission (the peak intensity y of the slow light) increases by a factor of 4.5 when the dummy light exists, while the group velocity vg increases from vg = 260 m/s to vg = 380 m/s.

Fig. 3
Fig. 3

Transmission of the slow light versus pulse separation T between the dummy light A and the probe light P. (a) without A, (b) T = 0, (c) T = 40, (d) T = 140, (e) T = 300, and (f) T = 340 μs. The insets of (b)−(f) are for the dummy light A, where the transmission and self-induced group delay is the same except (b). (g) and (h) Plot of (b)−(f) for transmission of S and group delay τ, respectively. Black squares in (g) and (h), respectively, indicate transmission and group delay of the self-induced slow light in (a). Laser power of R1, R2, P, and A, respectively, is 8, 14, 1.4 and 1.5 mW. Black diamonds in (g) and (h) are not shown in the left column. Black square in (g) and (h) is for (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

vgΩN(1+ωdχdω),

Metrics