Abstract

We compare a simple dynamical model of fiber laser arrays with independent experiments on two coupled lasers. The degree of agreement with experimental observations is excellent. Collectively the evidence presented supports this dynamical approach as an alternative to the traditional static eigenmode analysis of the coupled laser cavities.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Linewidth narrowing in an imbalanced Y-branch waveguide laser

N. A. Sanford, J. A. Aust, K. J. Malone, and D. R. Larson
Opt. Lett. 18(4) 281-283 (1993)

Fiber lasers with loop reflectors

Paul Urquhart
Appl. Opt. 28(17) 3759-3767 (1989)

Beam-propagation-dominant instability in an axially pumped solid-state laser near degenerate resonator configurations

Ching-Hsu Chen, Ming-Dar Wei, and Wen-Feng Hsieh
J. Opt. Soc. Am. B 18(8) 1076-1083 (2001)

References

  • View by:
  • |
  • |
  • |

  1. A. Liem, H. Limpert, and A. Tünnermann, “100W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1539 (2003).
    [Crossref]
  2. P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
    [Crossref]
  3. E. Bochove, P. Cheo, and G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003).
    [Crossref] [PubMed]
  4. C. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201,118 (2005).
    [Crossref]
  5. V. Apollonov, S. Derzhavin, V. Kislov, V. Kuzminov, D. Mashkovsky, and A. Prokhorov, “Phase-locking of the 2D structures,” Opt. Express 4, 19–26 (1999).
    [Crossref] [PubMed]
  6. M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett. 26, 980–982 (2001).
    [Crossref]
  7. N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
    [Crossref]
  8. V. Kozlov, J. Hernàndez-Cordero, and T. Morse, “All-fiber coherent beam combining of fiber lasers,” Opt. Lett. 24, 1814–1816 (1999).
    [Crossref]
  9. T. Simpson, A. Gavrielides, and P. Peterson, “Extraction characteristics of a dual fiber compound cavity,” Opt. Express 10, 1060–1073 (2002).
    [PubMed]
  10. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10, 1167–1172 (2002).
    [PubMed]
  11. D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
    [Crossref]
  12. D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
    [Crossref] [PubMed]
  13. H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
    [Crossref] [PubMed]
  14. H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).
  15. A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
    [Crossref]
  16. Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
    [Crossref] [PubMed]
  17. B. Lei and Y. Feng, “Phase locking of an array of three fiber lasers by an all-fiber coupling loop,” Opt. Express 15, 17114–17119 (2007).
    [Crossref] [PubMed]
  18. D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
    [Crossref]
  19. D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
    [Crossref]
  20. J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
    [Crossref]
  21. W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
    [Crossref]
  22. A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
    [Crossref]
  23. A. Shirakawa (personal communication, 2007).
  24. P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
    [Crossref]
  25. E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
    [Crossref] [PubMed]
  26. S. Bielawski and D. Derozier, “Dynamics of a Nd-doped fiber laser: c.w. and self-pulsing regimes, stabilization,” J. Phys. III France 5, 251–268 (1995).
    [Crossref]

2008 (1)

W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
[Crossref]

2007 (1)

2005 (4)

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[Crossref] [PubMed]

J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
[Crossref]

C. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201,118 (2005).
[Crossref]

2004 (3)

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
[Crossref]

A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

2003 (3)

2002 (3)

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

T. Simpson, A. Gavrielides, and P. Peterson, “Extraction characteristics of a dual fiber compound cavity,” Opt. Express 10, 1060–1073 (2002).
[PubMed]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10, 1167–1172 (2002).
[PubMed]

2001 (2)

M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett. 26, 980–982 (2001).
[Crossref]

P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[Crossref]

1999 (2)

1995 (1)

S. Bielawski and D. Derozier, “Dynamics of a Nd-doped fiber laser: c.w. and self-pulsing regimes, stabilization,” J. Phys. III France 5, 251–268 (1995).
[Crossref]

1994 (2)

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[Crossref] [PubMed]

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

1993 (1)

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

1988 (1)

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Abramov, A.

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

Apollonov, V.

Barthélémy, A.

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Bielawski, S.

S. Bielawski and D. Derozier, “Dynamics of a Nd-doped fiber laser: c.w. and self-pulsing regimes, stabilization,” J. Phys. III France 5, 251–268 (1995).
[Crossref]

Bo, Y.

Bochove, E.

Bruesselbach, H.

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

Chen, Y.

Chenevier, M.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[Crossref] [PubMed]

Cheo, P.

E. Bochove, P. Cheo, and G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003).
[Crossref] [PubMed]

P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[Crossref]

Corcoran, C.

C. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201,118 (2005).
[Crossref]

Davidson, N.

A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

Derozier, D.

S. Bielawski and D. Derozier, “Dynamics of a Nd-doped fiber laser: c.w. and self-pulsing regimes, stabilization,” J. Phys. III France 5, 251–268 (1995).
[Crossref]

Derzhavin, S.

Desfarges-Berthelemot, A.

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Durville, F.

C. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201,118 (2005).
[Crossref]

Eng, L.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Even, P.

Feng, Y.

Francois, P.

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Gavrielides, A.

Glas, P.

Guo, L.

Hernàndez-Cordero, J.

Ishaaya, A.

A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

Jones, D.

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

Kermène, V.

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

King, G.

E. Bochove, P. Cheo, and G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003).
[Crossref] [PubMed]

P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[Crossref]

Kislov, V.

Kozlov, V.

Kuzminov, V.

Lacot, E.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[Crossref] [PubMed]

Le Boudec, P.

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Le Flohic, M.

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Lefort, L.

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Lei, B.

Leitner, M.

Liem, A.

A. Liem, H. Limpert, and A. Tünnermann, “100W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1539 (2003).
[Crossref]

Limpert, H.

A. Liem, H. Limpert, and A. Tünnermann, “100W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1539 (2003).
[Crossref]

Liu, A.

P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[Crossref]

Lyndin, N.

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

Mahodaux, C.

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Mangir, M.

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

Marshall, W.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Mashkovsky, D.

Matsuo, K.

A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
[Crossref]

Mehuys, D.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Minden, M.

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

Mitsunaga, K.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Morse, T.

Peleš, S.

J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
[Crossref]

Peng, Q.

Peterson, P.

Prokhorov, A.

Pureur, D.

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Ray, W.

W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
[Crossref]

Rogers, J.

J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
[Crossref]

H. Bruesselbach, D. Jones, M. Mangir, M. Minden, and J. Rogers, “Self-organized coherence in fiber laser arrays,” Opt. Lett. 30, 1339–1341 (2005).
[Crossref] [PubMed]

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

Rogers, J. L.

W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
[Crossref]

Sabourdy, D.

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, and D. Pureur, “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003).
[Crossref] [PubMed]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

Saitou, T.

Sanchez, F.

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Sekiguchi, T.

Shimshi, L.

A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

Shirakawa, A.

Shirikawa, A.

A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
[Crossref]

Simpson, T.

Stephan, G.

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Stoeckel, F.

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[Crossref] [PubMed]

Sun, Z.

Sychugov, V.

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

Tikhomirov, A.

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

Tünnermann, A.

A. Liem, H. Limpert, and A. Tünnermann, “100W single-frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1539 (2003).
[Crossref]

Ueda, K.

A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
[Crossref]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10, 1167–1172 (2002).
[PubMed]

Wiesenfeld, K.

W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
[Crossref]

J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
[Crossref]

Wrage, M.

Xu, Z.

Yang, X.

Yariv, A.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Appl. Phys. Lett. (3)

C. Corcoran and F. Durville, “Experimental demonstration of a phase-locked laser array using a self-Fourier cavity,” Appl. Phys. Lett. 86, 201,118 (2005).
[Crossref]

A. Ishaaya, N. Davidson, and L. Shimshi, “Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Electron. Lett. (2)

D. Sabourdy, A. Desfarges-Berthelemot, V. Kermène, and A. Barthélémy, “Coherent combining of Q-switched fibre lasers,” Electron. Lett. 40, 1254–1255 (2004).
[Crossref]

D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur, “Power scaling of fibre lasers with all-fibre interferometric cavity,” Electron. Lett. 38, 692–693 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Rogers, S. Peleš, and K. Wiesenfeld, “Model for high-gain fiber laser arrays,” IEEE J. Quantum Electron. 41, 767–773 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Cheo, A. Liu, and G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001).
[Crossref]

J. Phys. III France (1)

S. Bielawski and D. Derozier, “Dynamics of a Nd-doped fiber laser: c.w. and self-pulsing regimes, stabilization,” J. Phys. III France 5, 251–268 (1995).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

P. Le Boudec, M. Le Flohic, P. Francois, F. Sanchez, and G. Stephan, “Self-pulsing in Er3+-doped fibre laser,” Opt. Quantum Electron. 25, 359–367 (1993).
[Crossref]

Phys. Rev. A (1)

E. Lacot, F. Stoeckel, and M. Chenevier, “Dynamics of an erbium-doped fiber laser,” Phys. Rev. A 49, 3997–4008 (1994).
[Crossref] [PubMed]

Phys. Rev. E (1)

W. Ray, K. Wiesenfeld, and J. L. Rogers, “Refined fiber laser model,” Phys. Rev. E 78, 046203 (2008).
[Crossref]

Proc. SPIE (1)

A. Shirikawa, K. Matsuo, and K. Ueda. “Fiber laser coherent array for power scaling of single-mode fiber laser,” Proc. SPIE 5662, 482–487 (2004).
[Crossref]

Quantum Electron. (1)

N. Lyndin, V. Sychugov, A. Tikhomirov, and A. Abramov, “Laser system composed of several active elements connected by single-mode couplers,” Quantum Electron. 24, 1058–1061 (1994).
[Crossref]

Other (2)

H. Bruesselbach, M. Minden, J. Rogers, D. Jones, and M. Mangir, “200W Self-Organized Coherent Fiber Arrays,” in 2005 Conference on Lasers and Electro-Optics (CLEO), vol. 1, p. 532 (2005).

A. Shirakawa (personal communication, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental schematic of two coupled lasers. Each laser gain block is terminated by a fiber Bragg grating (FBG) at one end and a high-loss output facet at the other with field reflection coefficients r 1 and r 2. A 50/50 directional coupler allows light to interact over a small distance of the fiber lengths. The labels E 1 and E 2 indicate the frame of reference for Eq. (1).

Fig. 2.
Fig. 2.

Power output characteristics for individual and two coupled lasers with imbalanced losses at the output facets. The solid line represents the average intensity produced by a single laser removed from the array. The filled (open) circles represent the average intensity output from the low (high) loss output facet for two coupled and symmetrically pumped lasers. (a) Experiment using two coupled erbium-doped fiber lasers [23]. (b) Simulation using iterative map model. For (a) and (b) the pumping is taken relative to lasing threshold for a single, uncoupled laser. The intensity axis in each panel is taken relative to IEXP,SIM sat , the respective single laser intensity at 50 times the lasing threshold.

Fig. 3.
Fig. 3.

Average intensity output for two coupled lasers with imbalanced losses at the output facets and asymmetrical diode pumping levels. The solid line in each panel plots the extraction emitted from both the lower- and higher-loss ports when only one component laser is pumped. The circles plot the extraction when the first laser is fixed at 1.52 times lasing threshold while the second is swept from 0 to 2.3 times lasing threshold. In each plot the filled (open) circles represent the average intensity emission from the lower (higher) loss output facet of the two lasers. (a) Reproduction of experimental data from Fig. 4(a),(b) of Ref. [9]. (b) Simulation using our iterative map model. For (a) and (b) the pumping is taken relative to lasing threshold where only one component laser in the array is pumped. The intensity axis in each panel is taken relative to the respective single laser intensity at twice the component lasing threshold.

Fig. 4.
Fig. 4.

(a)–(c) Plot of average intensity output as a function of the applied losses at the output facet of the first laser. The losses of the second laser are 9% higher than the losses of the first laser without applied losses. The filled (open) circles show the average intensity measured from the first (second) laser. Data shown for (a) experiment [reproduction of Fig. 4 from Ref. [10]] (b) simulation without noise (c) simulation with noise. (d) Intensity time trace from simulation with noise for applied loss level of 8%. The thin (thick) line plots pulses from first (second) laser. Values of IEXP,SIM sat represent the experimental and simulated single laser intensity at 50 times the lasing threshold.

Tables (1)

Tables Icon

Table 1. Parameter values used for simulations of two coupled lasers. The operating conditions are estimated from an empirical characterization of this system found in Ref. [9].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

En(t+T)=eGn(t)+jϕnL=12SnℓejϕRrℓm=12SℓmEm(t),
Gn(t+T)=Gn(t)+ε[xWth,npτ(GtotGn(t))(Gtot+Gn(t))]
2εIsat(1e2Gn(t))En(t)2.
S=ejβd (cos(κd)jsin(κd)jsin(κd)cos(κd)) .

Metrics