Abstract

We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111)B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Pérot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Pérot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
    [CrossRef] [PubMed]
  2. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
    [CrossRef] [PubMed]
  3. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [CrossRef]
  4. J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
    [CrossRef]
  5. S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
    [CrossRef]
  6. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
    [CrossRef]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  8. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
    [CrossRef] [PubMed]
  9. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [CrossRef] [PubMed]
  10. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
    [CrossRef] [PubMed]
  11. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
    [CrossRef]
  12. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
    [CrossRef] [PubMed]
  13. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
    [CrossRef]
  14. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
    [CrossRef] [PubMed]
  15. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
    [CrossRef] [PubMed]
  16. F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
    [CrossRef]
  17. P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
    [CrossRef]
  18. L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
    [CrossRef]
  19. J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
    [CrossRef]
  20. L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
    [CrossRef]
  21. L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
    [CrossRef] [PubMed]
  22. S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
    [CrossRef]
  23. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
    [CrossRef]
  24. B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
    [CrossRef]
  25. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16604 .
    [CrossRef] [PubMed]
  26. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
    [CrossRef]
  27. J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).
  28. Y. A. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008), 
 http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17400 .
    [CrossRef] [PubMed]

2008 (4)

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Y. A. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008), 
 http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17400 .
[CrossRef] [PubMed]

2007 (5)

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16604 .
[CrossRef] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

2006 (4)

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
[CrossRef] [PubMed]

P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

2005 (2)

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[CrossRef] [PubMed]

2004 (3)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

2003 (1)

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

2002 (1)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

2001 (5)

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

2000 (1)

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

1990 (1)

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Adesida, I.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Agarwal, R.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Agrawal, G. P.

Andideh, E.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Barrelet, C. J.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

Bohn, P. W.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Capasso, F.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

Chin, A. H.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Choi, H. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

Cocorullo, G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

Cui, Y.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Cunningham, B. T.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Della Corte, F. G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

Ding, Y.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

Duan, X. F.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Fukui, T.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Geng, M. M.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

Haber, L. H.

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Hara, S.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

Harris, T. D.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Hua, B.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Huang, Y.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Inari, M.

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Iodice, M.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

Jia, L. X.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Johnson, J. C.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Kim, K. H.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Kisting, S. R.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Knutsen, K. P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

Lauhon, L. J.

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Li, Y.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

Lieber, C. M.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[CrossRef] [PubMed]

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Lin, Q.

Liu, Y. L.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Loncar, M.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Maslov, A. V.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Meyyappan, M.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Mohan, P.

P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
[CrossRef]

Motohisa, J.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
[CrossRef]

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Muller, S.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

Ning, C. Z.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Noborisaka, J.

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Painter, O. J.

Park, H. G.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Park, H. K.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Park, J.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Pauzauskie, P. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
[CrossRef] [PubMed]

Qian, F.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

Rendina, I.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

Ronning, C.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Saykally, R. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Sirbuly, D. J.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
[CrossRef] [PubMed]

Soci, C.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Stillman, G. E.

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

Sunkara, M. K.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Takeda, J.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Tomioka, K.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

Vaddiraju, S.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

Wang, D.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Wang, D. L.

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

Wang, Z. L.

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wei, Q. Q.

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yan, H. Q.

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Yang, L.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

Yang, P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

Yang, P. D.

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Zhang, A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Zhang, L.

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Zhang, Y. A.

Zimmler, M. A.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

Appl. Phys. Lett. (8)

S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008).
[CrossRef]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[CrossRef]

P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006).
[CrossRef]

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006).
[CrossRef]

S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990).
[CrossRef]

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000).
[CrossRef]

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[CrossRef]

J. Phys. Chem. B (1)

J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001).
[CrossRef]

Nano Lett. (5)

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005).
[CrossRef] [PubMed]

F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[CrossRef]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).
[CrossRef]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007).
[CrossRef] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007).
[CrossRef]

Nanotechnology (2)

L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007).
[CrossRef]

L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[CrossRef] [PubMed]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef]

Nature (1)

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006).
[CrossRef] [PubMed]

Physica E (1)

J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004).
[CrossRef]

Science (4)

Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Other (1)

J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of the free-standing nanowires with InGaAs/GaAs heterostructures. (b) SEM image of the single nanowire with InGaAs/GaAs heterostructure dispersed onto the Si substrate with predefined Au/Ti markers. (c) TEM image of the InGaAs nanowire grown on the top of the GaAs nanowire. (d) Electron diffraction pattern of the InGaAs nanowire grown on the top of the GaAs nanowire.

Fig. 2
Fig. 2

Micro-PL spectra of the nanowires with InGaAs/GaAs heterostructures with different end facets. (M: magnification)

Fig. 3
Fig. 3

Micro-PL spectra of the nanowires with InGaAs/GaAs heterostructures with different structural parameters. (M: magnification)

Fig. 4
Fig. 4

(a) Nanowire with a hexagonal cross section surrounded by the air used as the model for the calculation of the group refractive indices. (b) Group refractive indices of the nanowires with InGaAs/GaAs heterostructures versus wavelength. (Solid squares: experimentally determined group refractive indices of the nanowire with W = 288 nm and L = 5.66 μm; Solid line: calculated group refractive indices of the nanowire with W = 288 nm and L = 5.66 μm considering both the material dispersion and the waveguide dispersion; Dot line: calculated group refractive indices of the nanowire with W = 288 nm and L = 5.66 μm only considering the waveguide dispersion; Solid circles: experimentally determined group refractive indices of the nanowire with W = 384 nm and L = 5.34 μm; Dash line: calculated group refractive indices of the nanowire with W = 384 nm and L = 5.34 μm considering both the material dispersion and the waveguide dispersion; Dash dot line: calculated group refractive indices of the nanowire with W = 384 nm and L = 5.34 μm only considering the waveguide dispersion; Dash dot dot line: calculated group refractive indices of the nanowire only considering the material dispersion.)

Fig. 5
Fig. 5

Calculated effective refractive indices, reflectivity and mode field distribution of the nanowires with different widths.

Fig. 6
Fig. 6

Micro-PL spectra of the nanowire with InGaAs/GaAs heterostructure (L = 5.66 nm, D = 288 nm) with the excitation power density changed from 0.0475 W/cm2 to 1500 W/cm2. (M: magnification)

Metrics