Abstract

We propose to launch terahertz surface plasmon polaritons on a structured metal surface by using a femtosecond laser pulse obliquely incident on a strip of an electro-optic material deposited on the surface. The laser pulse creates a nonlinear polarization that moves along the strip with a superluminal velocity and emits surface terahertz waves via the Cherenkov radiation mechanism. We calculate the radiated fields and frequency distribution of the radiated energy for a grooved perfect-conductor surface with a GaAs strip illuminated by Ti:sapphire laser. This technique can be used to perform surface terahertz spectroscopy.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Excitation of terahertz surface plasmon polaritons on etched groove gratings

Michael Martl, Juraj Darmo, Karl Unterrainer, and Erich Gornik
J. Opt. Soc. Am. B 26(3) 554-558 (2009)

TE-mode coplanar imaging using weakly anisotropic metasurface

Xiang Wan, Xiao Peng Shen, and Tie Jun Cui
Opt. Express 21(15) 17531-17538 (2013)

Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies

Yan Yang, Xiaopeng Shen, Pei Zhao, Hao Chi Zhang, and Tie Jun Cui
Opt. Express 23(6) 7031-7037 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
    [Crossref]
  2. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
    [Crossref]
  3. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
    [Crossref]
  4. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
    [Crossref]
  5. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
    [Crossref]
  6. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref] [PubMed]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
    [Crossref]
  8. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
    [Crossref]
  9. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
    [Crossref]

2008 (2)

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

2007 (1)

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

2006 (1)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
[Crossref]

2005 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
[Crossref]

2004 (2)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Almási, G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Bakunov, M. I.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
[Crossref]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Bodrov, S. B.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
[Crossref]

Fernández-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Garcia-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Hangyo, M.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Martin-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Maslov, A. V.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B: Lasers Opt. 78, 593–599 (2004).
[Crossref]

Appl. Phys. Lett. (1)

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

J. Appl. Phys. (2)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Phase-matched generation of a terahertz surface wave by a subluminous optical strip,” J. Appl. Phys. 98, 033101 (2005).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Below-band-gap excitation of a terahertz surface plasmon-polariton,” J. Appl. Phys. 100, 026106 (2006).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97–S101 (2005).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[Crossref]

Phys. Rev. B. (2)

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B. 72, 195336 (2005).
[Crossref]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B. 76, 085346 (2007).
[Crossref]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Excitation scheme. The inset shows the geometry of the surface used in calculations. (b) The frequency ωs of a partial SPP (blue) and stationary frequency ω 0 (red) as functions of φ for a/d = 0.5, h = 15 μm, and two values of α(equal to φ at ωs = ω 0 = 0).

Fig. 2.
Fig. 2.

(a) Snapshot of the electric field Ey (ξ,x) at y = 0+ Inset: Oscillogram Ey (ξ) at x = 1 mm and y = 0+. (b) Spectral density of energy wω (ω) (black) and the contributions to wω (ω) from the p- (red) and s-polarized (blue) fields and from the groove mode (green). In (a) and (b) a/d = 0.5 and h= 15 μm. (c) The radiated energy W s ± as a function of h and α for a/d = 0.5.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

PNL=pδ(y) G (x) F (ξ) ,
B˜y=0, E˜y=C exp (κy) ,
E˜y=0, B˜y=D exp (κy) ,
E˜z=ωcgB˜y=A sinky(y+h) , B˜x=c E˜zy ,
[E˜x]=(gV/ω) [E˜z] =4πigpy G˜ F˜ , [B˜x]=0
A=Dωdacgsinkyh=4πiω3pyG˜F˜c2VkyΛcoskyh,
C=4πpyG˜F˜ [g2+ω2V2+g2κ(κΛ)ky2] Λ1 ,
Ey(ξ,x,y)=dg E˜y (ω,g,y) eiωξigx .
ωs=V/hβ2cot2φ arctan(d/asinφ1β2sin2φβ2cot2φ).
Eys(x,y,ξ)=16π2c2V20ω4G˜F˜ky2Λg eκy [sin(ωξgx)+sin(ωξ+gx)] .
Eys(ξ,x,y)=2πg"0x16π2pyω04G˜(g0)F˜(ω0)c2V2ky2Λg(ω0)eκ0ysin[ω0ξg0xsgn(g0)π4],
Vdg=x=cotφ.
W±s=0 wω (ω) ,
wω(ω)=2gω5 (4π2pyG˜F˜cVΛgky)2 [ω4+(gκcV)2κc2ky2(ω4+g2V2)+ha/dcos2kyh(1sin2kyh2kyh)] .

Metrics