Abstract

We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As2S3 chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse’s optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986).
    [CrossRef]
  2. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [CrossRef]
  3. J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
    [CrossRef]
  4. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
    [CrossRef]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  6. C. Dorrer and D. N. Maywar, “RF Spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol. 22(1), 266–274 (2004).
    [CrossRef]
  7. J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
    [CrossRef]
  8. T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 3rd edition, 2001).
  10. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  11. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005).
    [CrossRef]
  12. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007).
    [CrossRef] [PubMed]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
    [CrossRef]
  14. L. W. Couch II, Digital and Analog Communication Systems (Prentice Hall Inc. New Jersey, 1997).
  15. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
    [CrossRef] [PubMed]
  16. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 .
    [CrossRef] [PubMed]
  17. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18(7), 476–478 (1993).
    [CrossRef] [PubMed]
  18. M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
    [CrossRef]
  19. V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 .
    [CrossRef] [PubMed]
  20. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  21. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11506 .
    [CrossRef] [PubMed]
  22. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2804 .
    [CrossRef] [PubMed]

2009 (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

2008 (3)

2007 (4)

2006 (4)

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 .
[CrossRef] [PubMed]

J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
[CrossRef]

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

2005 (1)

2004 (2)

C. Dorrer and D. N. Maywar, “RF Spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol. 22(1), 266–274 (2004).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

1994 (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

1993 (1)

1986 (1)

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986).
[CrossRef]

Adler, M.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Aggarwal, I. D.

Andrekson, P. A.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Bennion, I.

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Blows, J. L.

J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
[CrossRef]

Bogoni, A.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Calabretta, N.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Carroll, J. E.

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986).
[CrossRef]

Chernikov, S. V.

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Curtis, J. P.

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986).
[CrossRef]

de Sterke, C. M.

de Waardt, H.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Dianov, E. M.

Dorren, H. J. S.

Dorrer, C.

Eggleton, B. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11506 .
[CrossRef] [PubMed]

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 .
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 .
[CrossRef] [PubMed]

J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Fresi, F.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Fu, L.

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Guglielmucci, M.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Hiroishi, J.

Hu, P.

J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
[CrossRef]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Karlsson, M.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Khoe, G. D.

Koonen, A. M. J.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Lamont, M. R.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Li, J.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Littler, I. C.

Liu, Y.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11506 .
[CrossRef] [PubMed]

Luo, T.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Luther-Davies, B.

Madden, S.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Magi, E.

Maywar, D. N.

McGeehan, J. E.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Meloni, G.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Moss, D. J.

Olsson, B.-E.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Pan, Z.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Payne, D. N.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 .
[CrossRef] [PubMed]

Pelusi, M. D.

Potí, L.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Prasad, A.

Richardson, D. J.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Rochette, M.

Rode, A. V.

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Sanghera, J. S.

Scaffardi, M.

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Shaw, L. B.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Shu, X.

Smith, A.

Sugizaki, R.

Sunnerud, H.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Tadakuma, M.

Ta'eed, V. G.

Takahashi, M.

Tangdiongga, E.

Taniguchi, Y.

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Wang, R.-P.

Wang, Y.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Westlund, M.

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Willner, A. E.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Yagi, T.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yu, C.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

Zha, C.-J.

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006).
[CrossRef]

J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004).
[CrossRef]

Int. J. Electron. (1)

J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (2)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006).
[CrossRef]

M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006).
[CrossRef]

Opt. Express (5)

V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 .
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11506 .
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2804 .
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 3rd edition, 2001).

L. W. Couch II, Digital and Analog Communication Systems (Prentice Hall Inc. New Jersey, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a). Schematic principle of the all-optical RF spectrum analyzer, making use of XPM in a nonlinear waveguide to capture the power spectrum of a signal’s intensity given by G(f) = |F[I(t)]|2, which is distinct from optical spectrum of the signal itself given by S(f) = |F[E(t)]|2. (b) Comparison of calculated (top) temporal waveforms, I(t), (inset) optical spectra, S(f) and (lower) RF spectra, G(f) for a hypersecant shape pulse, that is either (solid curve) Fourier transform-limited, or dispersed by linear propagation over a distance of (dotted curve) 2 Ld , or (dashed curve) 5 Ld , where Ld is the pulse dispersion-length [9].

Fig. 2
Fig. 2

(a). (Upper) Micrograph image of typical As2S3 planar rib waveguide cross-section, and (lower) schematic of the 6 cm size chip coupled to lenzed fibers. (b) The measurement bandwidth of the PC-RFSA determined from the power of the side-band tone generated around the probe by XPM, as a function of the input signal sine-wave frequency, when signal and probe are separated by 50 nm.

Fig. 3
Fig. 3

(a). Experimental setup of the PC-RFSA for measuring the RF spectrum of femtosecond pulses generated from a DDF (b) Evaluation of pulse broadening in the As2S3 chip by measuring the intensity autocorrelation of the optical field reaching the OSA, either with the (blue solid curve) chip in place, or (red dots) substituted for a VOA. The pulse FWHM are 260 and 250 fs respectively. (Inset) Optical spectrum of DDF output measured on an OSA.

Fig. 4
Fig. 4

Measurement traces of soliton-compressed pulses emitted from a DDF, for different input launch powers of (a) 126 mW, and (b) 251 mW, captured as (i) temporal waveforms from (solid curve) SHG intensity autocorrelator, and (dots) reconstruction by numerical processing of PC-RFSA output RF spectra, and plotted in linear and (inset) log scales, (ii) optical spectra from an OSA and (iii) (solid curve) RF spectra from the PC-RFSA, compared to (dotted curve) numerically calculated sech4 fit.

Fig. 5
Fig. 5

Chromatic dispersion effect on the performance limits of the PC-RFSA, in terms of the approximate asymmtotic maximum measurement bandwidth (fmax ) and minimum FWHM (T) of a hyper-secant pulse-shape for distortion-free transmission through a waveguide of length L, for (solid curves) Δλ = 50 nm, (dashes) Δλ = 20 nm, and (dots) Δλ = 60 nm assuming D = 28 ps/nm.km, S = 0, and λ s = 1550 nm.

Metrics