Abstract

We analyze an on-chip optical isolator based on direction dependent single-mode cutoff, which is described in 1D and 2D momentum space. Isolation is shown using 3D finite difference time domain (FDTD) where the magnetization is represented by imaginary off-diagonal permittivity tensor elements. The isolator designs are optimized using perturbation theory, which successfully predicts increased isolation for rib waveguides and structures with non-magnetic dielectric layers. Our isolators are based on bismuth iron garnet and its compatible substrates; an isolation ratio of 10.7 dB/mm is achieved for TM modes.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Liu, Photonic Devices (Cambridge, New York, 2005).
  2. G. A. Allen, "The Magneto-optic Spectra of Bismuth-substituted Iron Garnets" (Ph.D. Dissertation, Massachusetts Institute of Technology, 1994).
  3. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
    [CrossRef]
  4. N. Kono and M. Koshiba, "Three-dimensional finite element analysis of nonreciprocal phase shifts in magneto-photonic crystal waveguides," Opt. Express 13, 9155-9166 (2005).
    [CrossRef]
  5. Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
    [CrossRef]
  6. Y. Shoji, I. W. Hsieh, R. M. Osgood, and T. Mizumoto, "Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift," J. Lightwave Technol. 25, 3108-3113 (2007).
    [CrossRef]
  7. T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
    [CrossRef]
  8. H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAs/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24,38-43 (2006).
    [CrossRef]
  9. H. Hemme, H. Dötsch, and P. Hertel, "Integrated optical isolator based on nonreciprocal-mode cut-off," Appl. Opt. 29, 2741-2744 (1990).
    [CrossRef]
  10. V. Priye and M. Tsutsumi, "Nonreciprocal behavior of leaky gyroscopic waveguide," Electron. Lett. 29, 104-105 (1993).
    [CrossRef]
  11. G. Dionne and G. Allen, "Spectra origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
    [CrossRef]
  12. T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
    [CrossRef]
  13. T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Stritzker, "Integration of magneto-optical active bismuth iron garnet on nongarnet substrates," J. Appl. Phys. 103, 07B337 (2008).
  14. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-614 (2002).
  15. L. Tang, S. Drezdzon, and T. Yoshie, "Single-mode waveguide optical isolator based on direction-dependent cutoff frequency," Opt. Express 16, 16202-16207 (2008).
    [CrossRef]

2008 (2)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

L. Tang, S. Drezdzon, and T. Yoshie, "Single-mode waveguide optical isolator based on direction-dependent cutoff frequency," Opt. Express 16, 16202-16207 (2008).
[CrossRef]

2007 (3)

2006 (1)

H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAs/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24,38-43 (2006).
[CrossRef]

2005 (1)

2002 (1)

2001 (1)

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

1993 (2)

V. Priye and M. Tsutsumi, "Nonreciprocal behavior of leaky gyroscopic waveguide," Electron. Lett. 29, 104-105 (1993).
[CrossRef]

G. Dionne and G. Allen, "Spectra origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
[CrossRef]

1990 (1)

Allen, G.

G. Dionne and G. Allen, "Spectra origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
[CrossRef]

Amemiya, T.

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

Dionne, G.

G. Dionne and G. Allen, "Spectra origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
[CrossRef]

Dötsch, H.

Drezdzon, S.

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Figotin, A.

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Hai, P. N.

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

Hemme, H.

Hertel, P.

Hsieh, I. W.

Kono, N.

Koshiba, M.

Mizumoto, T.

Nakano, Y.

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAs/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24,38-43 (2006).
[CrossRef]

Osgood, R. M.

Painter, O.

Priye, V.

V. Priye and M. Tsutsumi, "Nonreciprocal behavior of leaky gyroscopic waveguide," Electron. Lett. 29, 104-105 (1993).
[CrossRef]

Shimizu, H.

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAs/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24,38-43 (2006).
[CrossRef]

Shoji, Y.

Srinivasan, K.

Tanaka, M.

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

Tang, L.

Tsutsumi, M.

V. Priye and M. Tsutsumi, "Nonreciprocal behavior of leaky gyroscopic waveguide," Electron. Lett. 29, 104-105 (1993).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Wang, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Yokoyama, M.

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007).
[CrossRef]

Yoshie, T.

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

V. Priye and M. Tsutsumi, "Nonreciprocal behavior of leaky gyroscopic waveguide," Electron. Lett. 29, 104-105 (1993).
[CrossRef]

IEEE J. Lightwave Technol. (1)

H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAs/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24,38-43 (2006).
[CrossRef]

J. Appl. Phys. (1)

G. Dionne and G. Allen, "Spectra origins of giant Faraday rotation and ellipticity in Bi-substituted magnetic garnets," J. Appl. Phys. 73, 6127-6129 (1993).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5 µm optical isolator based on magneto-optic effects in ferromagnetic MnAs," Jpn. J. Appl. Phys. 46, 205-210 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. E (1)

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Other (3)

J. M. Liu, Photonic Devices (Cambridge, New York, 2005).

G. A. Allen, "The Magneto-optic Spectra of Bismuth-substituted Iron Garnets" (Ph.D. Dissertation, Massachusetts Institute of Technology, 1994).

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Stritzker, "Integration of magneto-optical active bismuth iron garnet on nongarnet substrates," J. Appl. Phys. 103, 07B337 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics