Abstract

A cavity-enhanced absorption spectrometer was used to saturate several lines of ammonia in the 1510 nm – 1560 nm region. Analysis of power broadening of the saturated absorption feature for one of the ammonia lines yielded a dipole moment value comparable to that of the lines in the ν13 band in acetylene. Highly reproducible frequency measurements of four ammonia line centres were carried out using a frequency comb generated by a mode-locked Cr4+:YAG laser. These results demonstrate the possible application of ammonia saturated absorption lines for frequency metrology and calibration in a spectral region lacking strong absorbers. To our knowledge, this is the first frequency measurement of saturated absorption lines in ammonia at near infrared frequencies and the first reported observation of saturated absorption lines in the ν1+2ν4 band.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-µm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
    [CrossRef]
  2. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  3. A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
    [CrossRef]
  4. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
    [CrossRef]
  5. C. Latrasse, M. Breton, M. Têtu, N. Cyr, R. Roberge, and B. Villeneuve, "C2HD and 13C2H2 absorption lines near 1530 nm for semiconductor-laser frequency locking," Opt. Lett. 19,1885-1887 (1994).
    [CrossRef] [PubMed]
  6. J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
    [CrossRef]
  7. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
    [CrossRef]
  8. J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
    [CrossRef]
  9. S. L. Gilbert, W. C. Swann, and C. M. Wang, "Hydrogen cyanide H13C14N absorption reference for 1530-1560 nm wavelength calibration - SRM 2519," NIST Spec. Publ., National Institute of Standards and Technology, Gaithersburg, MD, USA, pp 260-137 (1998).
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  11. A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5µm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements, (IEEE Press, Piscataway NJ, USA, 2004) IEEE Catalog No. 04CH37570, pp.666-667.
    [CrossRef]
  12. S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).
  13. L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
    [CrossRef]
  14. F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
    [CrossRef]
  15. Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
    [CrossRef]
  16. M. E. Webber, D. S. Baer, and R. K. Hanson, "Ammonia monitoring near 1.5 ?m with diode-laser absorption sensors," Appl. Opt. 40,2031-2042 (2001).
    [CrossRef]
  17. T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
    [CrossRef]
  18. M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
    [CrossRef]
  19. M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).
  20. M. Corrigan, "Measurements of absorption line frequency shifts and line broadening effects using frequency stabilized 1.5 micron lasers," M.Sc. Thesis, University of Ottawa (2007).
  21. A. M. Cubillas, J. Hald, and J. C. Petersen "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16,3976 - 3985 (2008).
    [CrossRef] [PubMed]
  22. L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
    [CrossRef]
  23. L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
    [CrossRef]
  24. A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
    [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  26. M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968).
    [CrossRef]
  27. J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948).
    [CrossRef]
  28. K. Shimoda "Line broadening and narrowing effects" in High-Resolution Laser Spectroscopy, Topics in Applied Physics, K. Shimoda, ed., (Springer-Verlag, Berlin, Germany, 1976) Vol. 13.
  29. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  30. A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005).
    [CrossRef] [PubMed]
  31. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
    [CrossRef]
  32. R. Felder, "Practical realization of the definition of the meter, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
    [CrossRef]
  33. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006).
    [CrossRef]

2008 (1)

2007 (2)

L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
[CrossRef]

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
[CrossRef]

2006 (5)

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006).
[CrossRef]

2005 (3)

A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005).
[CrossRef] [PubMed]

R. Felder, "Practical realization of the definition of the meter, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

2004 (3)

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

2003 (1)

2002 (1)

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

2001 (1)

2000 (2)

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

1994 (1)

1993 (1)

L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
[CrossRef]

1991 (1)

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

1989 (1)

S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).

1984 (1)

T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1968 (1)

M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968).
[CrossRef]

1948 (1)

J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948).
[CrossRef]

Alcock, A. J.

Allard, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Awaji, Y.

Baer, D. S.

Barwood, G. P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Bernard, J. E.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
[CrossRef]

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006).
[CrossRef]

A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005).
[CrossRef] [PubMed]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Bor, Z.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Bozóki, Z.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Breton, M.

Cerez, P.

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Chen, W.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Chepurov, S.

Corrigan, M.

M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).

Coy, S. L.

S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).

Cubillas, A. M.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cyr, N.

Czajkowski, A.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
[CrossRef]

M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006).
[CrossRef]

A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005).
[CrossRef] [PubMed]

A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

de Labachelerie, M.

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-µm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
[CrossRef]

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Diomandé, K.

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Drissler, S.

Dubé, P.

A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

Edwards, C. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Erdélyi, M.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Felder, R.

R. Felder, "Practical realization of the definition of the meter, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fraser, J. M.

Gianfrani, L.

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

Gill, P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Gordy, W.

J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948).
[CrossRef]

Guo, R.

Gush, H. P.

M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968).
[CrossRef]

Hald, J.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hanson, R. K.

Hardwick, J. L.

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

Heglund, F.

L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
[CrossRef]

Hong, F.-L.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Inaba, H.

Jiang, J.

Jones, D. J.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Kemssu, P.

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Kourogi, M.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Latrasse, C.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

C. Latrasse, M. Breton, M. Têtu, N. Cyr, R. Roberge, and B. Villeneuve, "C2HD and 13C2H2 absorption lines near 1530 nm for semiconductor-laser frequency locking," Opt. Lett. 19,1885-1887 (1994).
[CrossRef] [PubMed]

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Lea, S. N.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Lees, R. M.

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

Lees, R.M.

L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
[CrossRef]

Lehmann, K. K.

S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).

Li, L.

L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
[CrossRef]

Liu, Z.

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

Lundsberg-Nielsen, L.

L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
[CrossRef]

Ma, L.-S.

Ma, P.

Madej, A. A.

J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007).
[CrossRef]

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006).
[CrossRef]

A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005).
[CrossRef] [PubMed]

A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Margolis, H. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Marmet, L.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Martin, Z. T.

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Mitchell, I. V.

Mohácsi, A.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Nakagawa, K.

Nicolaisen, F. M.

L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
[CrossRef]

Onae, A.

Oppenheimer, C.

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

Petersen, J. C.

Poole, P. J.

Poulin, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Roberge, R.

Rowley, W. R. C.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

Saito, S.

T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
[CrossRef]

Schibli, T. R.

Schoene, E. A.

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

Siemsen, K. J.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Simmons, J. W.

J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948).
[CrossRef]

Sorokin, E.

Sorokina, I. T.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Szabó, G.

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Têtu, M.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

C. Latrasse, M. Breton, M. Têtu, N. Cyr, R. Roberge, and B. Villeneuve, "C2HD and 13C2H2 absorption lines near 1530 nm for semiconductor-laser frequency locking," Opt. Lett. 19,1885-1887 (1994).
[CrossRef] [PubMed]

Tittel, F. K.

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

Touahri, D.

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Trefler, M.

M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968).
[CrossRef]

Tretyakov, M. Y.

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

Tyng, V.

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

Villeneuve, B.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Webber, M. E.

Weidmann, D.

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

Windeler, R. S.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Wolf, E. N.

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

Xu, L-H

L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
[CrossRef]

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

Yakovlev, I.

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

Yamamoto, Y.

T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
[CrossRef]

Yanagawa, T.

T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
[CrossRef]

Ye, J.

2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada (1)

M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).

Appl. Opt. (1)

Appl. Phys. B (3)

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984).
[CrossRef]

Appl. Spec. (1)

Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991).
[CrossRef]

Infrared Phys. Technol. (1)

L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004).
[CrossRef]

J. Mol (2)

L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007).
[CrossRef]

J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006).
[CrossRef]

J. Mol. Spectrosc. (1)

L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993).
[CrossRef]

J. Opt. Soc. Am. B (5)

Metrologia (1)

R. Felder, "Practical realization of the definition of the meter, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

Opt. Comm. (1)

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000).
[CrossRef]

Opt. Commun. (1)

A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006).
[CrossRef]

Phys. Rev. (1)

J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948).
[CrossRef]

Phys. Rev. Lett. (1)

M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).

Other (4)

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5µm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements, (IEEE Press, Piscataway NJ, USA, 2004) IEEE Catalog No. 04CH37570, pp.666-667.
[CrossRef]

S. L. Gilbert, W. C. Swann, and C. M. Wang, "Hydrogen cyanide H13C14N absorption reference for 1530-1560 nm wavelength calibration - SRM 2519," NIST Spec. Publ., National Institute of Standards and Technology, Gaithersburg, MD, USA, pp 260-137 (1998).

K. Shimoda "Line broadening and narrowing effects" in High-Resolution Laser Spectroscopy, Topics in Applied Physics, K. Shimoda, ed., (Springer-Verlag, Berlin, Germany, 1976) Vol. 13.

M. Corrigan, "Measurements of absorption line frequency shifts and line broadening effects using frequency stabilized 1.5 micron lasers," M.Sc. Thesis, University of Ottawa (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the ammonia-stabilized laser system for cavity-enhanced spectroscopy.

Fig. 2.
Fig. 2.

(a). Observed dip of the saturated absorption peak of NH3 at 1531.65 nm. This profile was measured with the cavity pressure at 2.7 Pa (20 mTorr) and the intra-cavity laser power of 320 mW. (b). 3-f demodulated signal of the saturated absorption dip of NH3 at 1531.65 nm.

Fig. 3.
Fig. 3.

Square of the saturated absorption line widths (HWHM) for the transition at 1531.65 nm of NH3 at various one-way intracavity power values. Line widths were measured at a cavity pressure of 2.7 Pa (20 mTorr). Linear regression analysis yielded: intercept=0.69(4) MHz2, slope=0.0029(1) MHz2/mW.

Fig. 4.
Fig. 4.

Schematic overview of the experimental setup used for the frequency measurements of saturated absorption lines in ammonia.

Fig. 5.
Fig. 5.

Schematic diagram of the layout for the Cr4+:YAG femtosecond laser system.

Fig. 6.
Fig. 6.

The spectral emission profile of the Cr4+:YAG laser frequency comb used in the ammonia measurements.

Fig. 7.
Fig. 7.

Summary of frequency measurements for the 1531.65-nm line of ammonia. The error bars show the standard deviation of the 60-s measurement runs for a particular day and do not include the uncertainty associated with the P(16) reference line frequency.

Tables (1)

Tables Icon

Table 1. Summary of frequency measurements of selected NH3 lines. The combined standard uncertainties in the last digit are indicated in the brackets.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

lineA(ω)=8π3ω0n0(eE1kTeE2kT)(J+1)μ1223hcQ
Δωp=Γ1+PPs ,
P=π2 w02 (12cε0E2)
μ12Eħ=Γ
μ12=w02(π4cε0(ħΓ)2Ps)
Δf=(mn)frep±ft

Metrics