Abstract

We performed Second Harmonic Microscopy of axonemes obtained from sea urchin sperm. Using polarization analysis and a trade-off between signal and photodamage, we were able to determine, for the first time to our knowledge, the nonlinear susceptibility χzxx/χxzx = 1.1 ± 0.2 and χzzz/χxzx = 4± 0.5 of axonemes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Marshall, "The cell biological basis of ciliary disease", J. Cell. Biol. 180, 17-21 (2008).
    [CrossRef] [PubMed]
  2. K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
    [CrossRef] [PubMed]
  3. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
    [CrossRef]
  4. W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
    [CrossRef] [PubMed]
  6. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
    [CrossRef] [PubMed]
  7. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
    [CrossRef] [PubMed]
  8. P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).
  9. A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. 105, 11370-11375 (2008).
    [CrossRef] [PubMed]
  10. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, "Optical visualization of Alzheimers pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation," Opt. Express 17, 3679-3689 (2009) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3679.
    [CrossRef] [PubMed]
  11. C.M. Waterman-Storer, "Microtubule/organelle motility assays". In Current Protocols in Cell Biology, J.S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz, and K.M. Yamada, eds. (John Wiley, NY.1998), pp Ch.13:Unit 13.1.1-13.1.21.
  12. D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
    [CrossRef]
  13. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
    [CrossRef] [PubMed]
  14. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, "Collagen and myosin characterization by orientation field second harmonic microscopy," Opt. Express 16, 16151-16165 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16151
    [CrossRef] [PubMed]
  15. D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
    [CrossRef] [PubMed]
  16. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
    [CrossRef] [PubMed]
  17. M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
    [CrossRef]
  18. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
    [CrossRef]

2009 (1)

2008 (4)

W. F. Marshall, "The cell biological basis of ciliary disease", J. Cell. Biol. 180, 17-21 (2008).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. 105, 11370-11375 (2008).
[CrossRef] [PubMed]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
[CrossRef] [PubMed]

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, "Collagen and myosin characterization by orientation field second harmonic microscopy," Opt. Express 16, 16151-16165 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16151
[CrossRef] [PubMed]

2007 (1)

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

2006 (1)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

2005 (1)

D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
[CrossRef] [PubMed]

2003 (4)

W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

2002 (3)

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
[CrossRef]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
[CrossRef]

2000 (1)

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

1995 (1)

D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
[CrossRef]

Alkilani, A.

Baffet, G.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
[CrossRef] [PubMed]

Baumeister, W.

D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
[CrossRef] [PubMed]

Boryskina, O. P.

Campagnola, P. J.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

Chrétien, D.

D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
[CrossRef]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

Dombeck, D. A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. 105, 11370-11375 (2008).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

Duff, K.

Fleury, V.

Friedl, P.

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

Fuller, S. D.

D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
[CrossRef]

Gailhouste, L.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
[CrossRef] [PubMed]

Gonzalez, M. P.

M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
[CrossRef]

Gouras, G. K.

Guilbert, T.

Harms, G.

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

Karsenti, E.

D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
[CrossRef]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

König, K.

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

Kwan, A. C.

Le Grand, Y.

Loew, L. M.

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Marshall, W. F.

W. F. Marshall, "The cell biological basis of ciliary disease", J. Cell. Biol. 180, 17-21 (2008).
[CrossRef] [PubMed]

McIntosh, J. R.

D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
[CrossRef] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

Murado, M. A.

M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
[CrossRef]

Nicastro, D.

D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
[CrossRef] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

Odin, C.

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

Renault, A.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
[CrossRef] [PubMed]

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
[CrossRef]

Vazquez, J. A.

M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
[CrossRef]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

von Andrian, U. H.

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

Webb, W. W.

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, "Optical visualization of Alzheimers pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation," Opt. Express 17, 3679-3689 (2009) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3679.
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. 105, 11370-11375 (2008).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

Webb, W.W.

W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

Wolf, K.

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Zoumi, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
[CrossRef]

Biophys J. (1)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, "Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres," Biophys J. 90,693-703 (2006).
[CrossRef]

Biophys. J. (1)

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-Modulated Second Harmonic Generation in Collagen," Biophys. J. 82,3330-3342 (2002).
[CrossRef] [PubMed]

Curr. Prot. Cell Biol. (1)

P. Friedl, K. Wolf, U. H. von Andrian, and G. Harms, "Biological second and third harmonic generation microscopy," Curr. Prot. Cell Biol. 4.15, 1-21 (2007).

Enz. and Micr. Techn. (1)

M. A. Murado, M. P. Gonzalez, and J. A. Vazquez, "Dose-response relationships: an overview, a generative model and its application to the verification of descriptive models", Enz. and Micr. Techn. 31, 439-455 (2002).
[CrossRef]

J. Cell Biol (1)

D. Chrétien, S. D. Fuller and E. Karsenti, "Structure of growing microtubule ends: Two-dimensional sheets close into tubes at variable rates," J. Cell Biol 129, 13111328 (1995).
[CrossRef]

J. Cell. Biol. (1)

W. F. Marshall, "The cell biological basis of ciliary disease", J. Cell. Biol. 180, 17-21 (2008).
[CrossRef] [PubMed]

J. Microsc. (2)

K. König, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, "Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy," J. Microsc. 229, 32-38 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M.  Williams, and W.W.  Webb, "Nonlinear magic : multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

PNAS (1)

D. Nicastro, J. R. McIntosh, and W. Baumeister, "3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography," PNAS 10215889-15894 (2005).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sc. (1)

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Nat. Acad. Sc. 20, 11014-11019 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. (2)

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. 100, 7081-7086 (2003).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. 105, 11370-11375 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb. "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100,7075-7080 (2003).
[CrossRef] [PubMed]

Other (1)

C.M. Waterman-Storer, "Microtubule/organelle motility assays". In Current Protocols in Cell Biology, J.S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz, and K.M. Yamada, eds. (John Wiley, NY.1998), pp Ch.13:Unit 13.1.1-13.1.21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(color online) :(a) DIC images of axonemes; (b) Isotropic SHG images of axonemes ( both images 23.5 × 23.5 μm2); (c) SHG: 2.4 × 5.5μm2 zoom on a vertical axoneme . Right: two examples of horizontal profiles. Bottom : mean profile integrated along all the axoneme. Continuous lines represent the best gaussian fits of the data.

Fig. 2.
Fig. 2.

(color online) : (a) Linear relationship between SHG signal mean and variance ; (b) Histogram of the mean number of photoelectrons < n > per pixel. (c) Axoneme photodamage induced by repetitive laser scanning (23.5×23.5 μm2). The number represents the image scan number. (d) Axoneme mean SHG intensity as a function of scan number. The continuous line represent the best fit with a logistic function.

Fig. 3.
Fig. 3.

(color online) : OF-SHM studies of axonemes (512×512 images, zoom 10X, full scale 23.5μm). (a1–a4) A set of 4 SHG polarization images indicated by the double white arrows; (b) isotropic image U; (c) orientation field represented by bars directed along the symmetry axis of χ (2). For clarity, only a few bars are represented; (d)–(e) Correlation between the orientation ω of the axonemes, and ϕ of the principal axis of χ (2) for 4 (d) or 6 (e) polarizations. Lines represent the bissectrices.

Fig. 4.
Fig. 4.

Determination of ξ and ρ by OF-SHM with 6 polarization /6. (a) Examples of fits of the SHG polarization data derived from 3 axonemes of different orientations. (b) Histograms of the ratios χαβγ /X, where X = χzxx + χxzx + χzzz . Continuous lines represents the best fit with gaussians. (c) Master curve obtained from the intensities as a function of θ for all the axonemes. (d) Mean intensity curve obtained by binning the intensity over bins of 5° width. Continuous lines are best fits with Eq. 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I2ω(ϕ,ψ)[χxzxsin2θ]2+[χzzzcos2θ+χzxxsin2θ]2

Metrics