Abstract

We present experimental and theoretical studies on terahertz surface plasmon (TSP) propagation on slit and rectangular aperture arrays in an aluminum sheet. Terahertz waves are coupled onto the plasmonic structures via a parallel plate waveguide. Long-lasting oscillations are observed in the temporal pulse shape after propagating through the periodic structure, whose Fourier transformation into the frequency domain results in Bragg-resonance spectral features. We show that the interference between the incident wave and the radiation reflected from both the aperture array and the waveguide block is responsible for this Bragg-resonance behavior. The reflection coefficient for a single slit is deduced to be 0.017 ± 0.002.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
    [CrossRef]
  2. J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche,” Ann. Phys. 23, 846–866 (1907).
    [CrossRef]
  3. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  5. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
    [CrossRef]
  6. J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
    [CrossRef]
  7. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
    [CrossRef]
  8. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
    [CrossRef]
  10. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  11. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  12. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
    [CrossRef] [PubMed]
  13. J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
    [CrossRef]
  14. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
    [CrossRef]
  15. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [CrossRef] [PubMed]
  16. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
    [CrossRef]
  17. E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).
  18. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
    [CrossRef] [PubMed]
  19. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
    [CrossRef]
  20. J. D. Jackson, “Classical Electrodynamics” (John Wiley & Sons, New York, 3rd edition, 1999).

2008

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

2006

J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

2005

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
[CrossRef]

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
[CrossRef] [PubMed]

2003

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

2001

1957

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

1907

J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

1899

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Bolivar, P. Haring

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Garcia-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Gómez Rivas, J.

J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[CrossRef]

Grischkowsky, D.

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Jang, J. S.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

Jeon, T.-I.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

Ji, Y. B.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Kim, S. H.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Lee, E. S.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

López-Tejeira, F.

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Martin-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mendis, R.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Qu, D.

Ritchie, R. H.

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Schotsch, C.

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Sommerfeld, A.

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Zenneck, J.

J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

Zhang, W.

Ann. Phys.

J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

Ann. Phys. Chem.

A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899).
[CrossRef]

Appl. Phys. Lett.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

J. Korean Phys. Soc.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005).
[CrossRef]

Nat. Photonics

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Phys. Rev. B

J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Phys. Rev. Lett.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Science

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other

J. D. Jackson, “Classical Electrodynamics” (John Wiley & Sons, New York, 3rd edition, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup and geometry of the slit apertures. (b) Photo image of slits

Fig. 2
Fig. 2

(a) TSP pulse propagates on 1D array of slits. The inset shows the expanded data from 10 to 55psec. (b) Spectrum amplitude of reflection corresponding to the 10 to 55psec data. (c) Solid line renders the spectrum amplitude obtained using the whole measurement and the dashed line indicates the theoretical calculation. The inset shows the spectrum expanded at the resonance near 0.75THz.

Fig. 3
Fig. 3

Theoretical calculation with different length for a 400μm slit period.

Fig. 4
Fig. 4

Comparison of spectral resonances for different and d in rectangular hole arrays. Solid and dashed lines indicate experimental and theoretical results, respectively.

Fig. 5
Fig. 5

Modulus of the reflection coefficients calculated with the modal expansion technique. RI and RNI denote the reflection coefficients for the illuminated and nonilluminated faces of the aluminum sheet, respectively. RT is defined as the sum of the modulus of RI and RNI.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(ω)=Eref(ω)[1+Reik2(1eiNk2d1eik2d)+higherordertermsinR]

Metrics