Abstract

Nanofocusing properties of a tip in the form of a dielectric tapered fiber with metal apertureless coating and dielectric nanocladding can be tuned within a wide spectral range by choice of cladding permittivity. The silica core of diameter decreasing from 2 μm to 5 nm in apex is covered with a silver layer and has a 5 nm dielectric cladding. Internal illumination with a radially polarized Laguerre-Gauss beam guided in fiber is used. In body-of-revolution finite-difference time-domain simulations we find that with an increase of the refractive index of nanocladdings the maximum enhancement occurs for increasingly longer wavelengths.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film

Daniel R. Mason, Dmitri K. Gramotnev, and Kwang S. Kim
Opt. Express 20(12) 12866-12876 (2012)

Field-enhanced nanofocusing of radially polarized light by a tapered hybrid plasmonic waveguide with periodic grooves

Ji Xu, Kang Li, Sicheng Zhang, Xinyi Lu, Nannan Shi, Zhaohuan Tan, Yunqing Lu, Ning Liu, Baifu Zhang, and Zhongcheng Liang
Appl. Opt. 58(3) 588-592 (2019)

Optical field characteristics of nanofocusing by conical metal-coated dielectric probe

Kazuo Tanaka, Kiyofumi Katayama, and Masahiro Tanaka
Opt. Express 19(21) 21028-21037 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  3. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge, Cambridge, 2007).
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  5. T. J. Antosiewicz and T. Szoplik, “Description of near– and far–field light emitted from a metal–coated tapered fiber tip,” Opt. Express 15(12), 7845–7852 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 .
    [Crossref] [PubMed]
  6. T. J. Antosiewicz and T. Szoplik, “Corrugated metal–coated tapered tip for scanning near–field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10920 .
    [Crossref] [PubMed]
  7. T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
    [Crossref]
  8. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
    [Crossref] [PubMed]
  9. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-9-970 .
    [Crossref] [PubMed]
  10. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
    [Crossref]
  11. W.-X. Sun and Z.-X. Shen, “Optimizing the near field around silver tips,” J. Opt. Soc. Am. A 20(12), 2254–2259 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2254 .
    [Crossref]
  12. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
    [Crossref] [PubMed]
  13. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
    [Crossref]
  14. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
    [Crossref]
  15. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
    [Crossref]
  16. A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
    [Crossref] [PubMed]
  17. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
    [Crossref]
  18. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4106 .
    [Crossref] [PubMed]
  19. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
    [Crossref]
  20. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
    [Crossref]
  21. Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
    [Crossref]
  22. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009), http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-1-1 .
    [Crossref]
  23. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [Crossref]
  24. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [Crossref]
  25. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-45 .
    [Crossref] [PubMed]
  26. T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
    [Crossref]
  27. J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007).
    [Crossref]

2009 (2)

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009), http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-1-1 .
[Crossref]

2008 (6)

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-45 .
[Crossref] [PubMed]

T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
[Crossref]

A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
[Crossref] [PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
[Crossref]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

2007 (7)

T. J. Antosiewicz and T. Szoplik, “Description of near– and far–field light emitted from a metal–coated tapered fiber tip,” Opt. Express 15(12), 7845–7852 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 .
[Crossref] [PubMed]

T. J. Antosiewicz and T. Szoplik, “Corrugated metal–coated tapered tip for scanning near–field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10920 .
[Crossref] [PubMed]

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4106 .
[Crossref] [PubMed]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[Crossref]

J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007).
[Crossref]

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[Crossref]

2005 (3)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W.-X. Sun and Z.-X. Shen, “Optimizing the near field around silver tips,” J. Opt. Soc. Am. A 20(12), 2254–2259 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2254 .
[Crossref]

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

1995 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Antosiewicz, T. J.

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Baida, F. I.

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Belkhir, A.

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[Crossref]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Chen, W.

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Downes, A.

A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Elfick, A.

A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

Grosjean, T.

T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
[Crossref]

Guckenberger, R.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[Crossref]

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-9-970 .
[Crossref] [PubMed]

Issa, N. A.

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[Crossref]

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Khoshman, J. M.

J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007).
[Crossref]

Kordesch, M. E.

J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007).
[Crossref]

Kozawa, Y.

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[Crossref]

Kuipers, L. K.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Nerkararyan, K. V.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Nerkararyana, Kh. V.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

Novotny, L.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-9-970 .
[Crossref] [PubMed]

Pohl, D. W.

Polman, A.

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

Sabac, A.

T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
[Crossref]

Salter, D.

A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
[Crossref] [PubMed]

Sato, S.

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[Crossref]

Shen, Z.-X.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

Suarez, M.

T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
[Crossref]

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Sun, W.-X.

Szoplik, T.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Verhagen, E.

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Yonezawa, K.

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhan, Q.

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. B (2)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005).
[Crossref]

Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007).
[Crossref]

Appl. Phys. Lett. (2)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008).
[Crossref]

J. Appl. Phys. (2)

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000).
[Crossref]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
[Crossref]

J. Microsc. (2)

A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008).
[Crossref] [PubMed]

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[Crossref]

Phys. Rev. B (2)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

Plasmonics (2)

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[Crossref]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[Crossref]

Thin Solid Films (1)

J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007).
[Crossref]

Other (1)

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge, Cambridge, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of the analyzed apertureless SNOM probe. The probe layers from the axis are: dielectric core in dark blue, silver cladding in light gray, outer dielectric coating in light blue. The cladding of the fiber is not shown. The input beam is a radially polarized Laguerre-Gauss beam and is defined by R – radius of maximum intensity.
Fig. 2
Fig. 2 Intensity enhancement at the apex of a DMD probe tapered at 20° half-angle with silver thickness d = 40 nm: (a) intensity enhancement normalized to the maximum intensity of incident light and (b) to intensity enhancement achievable without cladding.
Fig. 3
Fig. 3 Intensity enhancement at the apex of DMD probes for silver coating thicknesses d changing from 20 to 60 nm for nanocladding permittivities ε (a) 1.44, (b) 2.25, (c) 3.24.
Fig. 4
Fig. 4 Electric energy density |E|2 distributions for (a) a silver coated probe without cladding at wavelength λ = 420 nm, (b) probe with nanocladding ε = 2.89 at λ = 570 nm, and (c) probe with nanocladding ε = 3.24 at λ = 600 nm. The energy density scale is logarithmic, the maximum electric energy density for an incident wave is shown with a white line at 100. FWHM of electric field is calculated 3 nm from the apex.

Metrics