Abstract

We experimentally demonstrate tunable optical wavelength conversion of a 10-Gb/s radio frequency (RF)-tone assisted orthogonal-frequency-division-multiplexing (OFDM) signal with ~-5 dB (~30%) efficiency over ~30 nm bandwidth using a periodically-poled lithium-niobate (PPLN) waveguide. A penalty of < 3 dB is obtained after wavelength conversion. Quadrature amplitude modulation (QAM) size and subcarrier number are varied to further evaluate the performance of the wavelength converter.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [CrossRef]
  2. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [CrossRef] [PubMed]
  3. D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, “8×11.5-Gb/s OFDM Transmission over 1000km SSMF Using Conventional DFB Lasers and Direct-Detection,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM3.
  4. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
    [CrossRef]
  5. B. Huettl, A. Gual i Coca, H. Suche, R. Ludwig, C. Schmidt-Langhorst, H. G. Weber, W. Sohler, and C. Schubert, 320 Gbit/s DQPSK All-Optical Wavelength Conversion Using Periodically Poled LiNbO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThF1.
  6. K. Igarashi and K. Kikuchi, “Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 14(3), 551–565 (2008).
    [CrossRef]
  7. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  8. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [CrossRef]
  9. W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Experimental Demonstration of 1600 km SSMF Transmission of a Generalized Direct Detection Optical Virtual SSB-OFDM System,” in European Conference on Optical Communications (ECOC) 2008, paper Mo.3.E.6.
  10. J. Yamawaku, O. Tadanaga, A. Takada, H. Miyazawa, E. Yamazaki, and M. Asobe, “Selective wavelength conversion using PPLN waveguide with two pump configuration,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWB5.
  11. R. van Nee, and R. Presad, OFDM for Wireless Multimedia Communications (Artech House, Norwood, MA, 2000).
  12. A. Bogoni, X. Wu, I. Fazal, and A. Willner, “320 Gb/s Nonlinear Operations Based on a PPLN Waveguide for Optical Demultiplexing and Wavelength Conversion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThS5.

2009 (1)

2008 (2)

W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
[CrossRef] [PubMed]

K. Igarashi and K. Kikuchi, “Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 14(3), 551–565 (2008).
[CrossRef]

2007 (1)

2000 (1)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Arbab, V. R.

Armstrong, J.

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Burrus, C. A.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chi, S.

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christen, L. C.

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Dreyer, K.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Du, L. B.

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Feng, K.-M.

Igarashi, K.

K. Igarashi and K. Kikuchi, “Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 14(3), 551–565 (2008).
[CrossRef]

Joyner, C. H.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Kikuchi, K.

K. Igarashi and K. Kikuchi, “Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 14(3), 551–565 (2008).
[CrossRef]

Leuthold, J.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Lowery, A. J.

Ma, Y.

Mikkelsen, B.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Miller, B. I.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Peng, W.-R.

Pleumeekers, J. L.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Raybon, G.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

Shamee, B.

Shieh, W.

Willner, A. E.

Wu, X.

Yang, J.-Y.

Yang, Q.

Electron. Lett. (1)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36(13), 1129–1130 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Igarashi and K. Kikuchi, “Optical Signal Processing by Phase Modulation and Subsequent Spectral Filtering Aiming at Applications to Ultrafast Optical Communication Systems,” IEEE J. Sel. Top. Quantum Electron. 14(3), 551–565 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (6)

D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, “8×11.5-Gb/s OFDM Transmission over 1000km SSMF Using Conventional DFB Lasers and Direct-Detection,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM3.

B. Huettl, A. Gual i Coca, H. Suche, R. Ludwig, C. Schmidt-Langhorst, H. G. Weber, W. Sohler, and C. Schubert, 320 Gbit/s DQPSK All-Optical Wavelength Conversion Using Periodically Poled LiNbO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThF1.

W. Peng, B. Zhang, X. Wu, K. Feng, A. Willner, and S. Chi, “Experimental Demonstration of 1600 km SSMF Transmission of a Generalized Direct Detection Optical Virtual SSB-OFDM System,” in European Conference on Optical Communications (ECOC) 2008, paper Mo.3.E.6.

J. Yamawaku, O. Tadanaga, A. Takada, H. Miyazawa, E. Yamazaki, and M. Asobe, “Selective wavelength conversion using PPLN waveguide with two pump configuration,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWB5.

R. van Nee, and R. Presad, OFDM for Wireless Multimedia Communications (Artech House, Norwood, MA, 2000).

A. Bogoni, X. Wu, I. Fazal, and A. Willner, “320 Gb/s Nonlinear Operations Based on a PPLN Waveguide for Optical Demultiplexing and Wavelength Conversion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThS5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Concept of radio frequency (RF)-tone assisted OFDM. B: bandwidth of the OFDM signal.

Fig. 2
Fig. 2

Concept of wavelength conversion using the combination of sum frequency generation (SFG) and difference frequency generation (DFG) in a PPLN waveguide. QPM: quasi-phase matching.

Fig. 3
Fig. 3

Experimental setup of OFDM wavelength conversion. The constellations and RF spectra of 8-QAM & 16-QAM are inserted. BPF: band-pass filter.

Fig. 4
Fig. 4

Optical spectra after wavelength conversion. QPM: quasi-phase matching wavelength. (a) λC = 1538.5 nm (b) λC = 1554.4 nm (c) λC = 1565 nm (d) 10-Gb/s optical OFDM signal (zoomed-in).

Fig. 5
Fig. 5

BER performance of the 10-Gb/s RF-tone assisted OFDM signal for both back to back and after wavelength conversion.

Fig. 6
Fig. 6

BER performance of 8-QAM and 16-QAM for both back to back (bb) and after wavelength conversion.

Fig. 7
Fig. 7

Effect of different subcarrier numbers on wavelength conversion for a 10-Gb/s RF tone assisted OFDM signal. bb: back to back.

Metrics