Abstract

In this paper we propose contact lens central thickness measurement with a low coherence interferometry technique using either a SLED source or a broadband continuum generated in air-silica Microstructured Optical Fiber (MOF) pumped with a picosecond microchip laser. Each of these sources associated with the interferometer provides, at the same time, good measurement resolution and quick signal recording without moving any optical elements and without need of a Fourier Transform operation. Signal improvement is performed afterwards by a numerical treatment for optimal correlation peaks detection leading to central thickness value of several contact lenses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Marcus, J. R. Lee, H. W. Harris, and R. Kelbe, "Apparatus for measuring Material Thickness Profiles," US Patent # 6067161 (2000).
  2. M. A. Marcus, J. R. Lee, and H. W. Harris, "Method for measuring material thickness profiles," US Patent # 6038027 (2000).
  3. T. Blalock and S. Heveron-Smith, "Practical applications in film and optics measurements for dual light source interferometry," Proc. SPIE 5589, 107-113 (2004).
    [CrossRef]
  4. B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (New York: Marcel Dekker 2002).
  5. Q1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. of Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  7. R. Leitbeg, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef]
  8. R. Leitbeg, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  9. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azana, "Optical Frequency domain reflectometry based on real-time Fourier Transformation," Opt. Express 15, 4597-4616 (2007).
    [CrossRef] [PubMed]
  10. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-Transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  11. C. Dorrer, "Influence of the calibration of the detector on spectral interferometry," J. Opt. Soc. Am. B 16, 1160-1168 (1999).
    [CrossRef]
  12. K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
    [CrossRef]
  13. K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).
  14. V. Tombelaine, C. Lesvigne, P. Leproux, L. Grossard, V. Couderc, J. L. Auguste, J. M. Blondy, G. Huss, and P. H. Pioger, "Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities," Opt. Express 13,7399-7404 (2005).
    [CrossRef] [PubMed]
  15. I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
    [CrossRef]

2007 (1)

2005 (1)

2004 (3)

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

T. Blalock and S. Heveron-Smith, "Practical applications in film and optics measurements for dual light source interferometry," Proc. SPIE 5589, 107-113 (2004).
[CrossRef]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

R. Leitbeg, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef]

2000 (2)

1999 (2)

C. Dorrer, "Influence of the calibration of the detector on spectral interferometry," J. Opt. Soc. Am. B 16, 1160-1168 (1999).
[CrossRef]

Q1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. of Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

1997 (1)

I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
[CrossRef]

Ahn, T. J.

Auguste, J. L.

Azana, J.

Belabas, N.

Ben Houcine, K.

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

Blalock, T.

T. Blalock and S. Heveron-Smith, "Practical applications in film and optics measurements for dual light source interferometry," Proc. SPIE 5589, 107-113 (2004).
[CrossRef]

Blondy, J. M.

Brun, G.

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
[CrossRef]

Couderc, V.

Dorrer, C.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Fercher, A. F.

Goure, J. P.

I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
[CrossRef]

Grossard, L.

Heveron-Smith, S.

T. Blalock and S. Heveron-Smith, "Practical applications in film and optics measurements for dual light source interferometry," Proc. SPIE 5589, 107-113 (2004).
[CrossRef]

Hitzenberger, C. K.

Huss, G.

Jacquot, M.

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

Joffre, M.

Kieffer, J. C.

Kowalczyk, A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leitbeg, R.

Leproux, P.

Lesvigne, C.

Likforman, J. P.

Park, Y.

Pioger, P. H.

Reolon, D.

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

Schmitt, J. M.

Q1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. of Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Sticker, M.

Tombelaine, V.

Veillas, C.

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

Verrier, I.

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, "Imaging through scattering medium using SISAM correlator," Opt. Lett. 29, 2908-2910 (2004).

I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
[CrossRef]

Wojtkowski, M.

Appl. Opt. (1)

I. Verrier, G. Brun, and J. P. Goure, "SISAM interferometer for distance measurement," Appl. Opt. 36, 6 (1997).
[CrossRef]

IEEE J. of Sel. Top. Quantum Electron. (1)

Q1. J. M. Schmitt, "Optical Coherence Tomography (OCT): A review," IEEE J. of Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (2)

K. Ben Houcine, G. Brun, M. Jacquot, I. Verrier, D. Reolon, and C. Veillas, "Temporal analysis of optical complex structures: application to tomography through scattering media," Proc. SPIE 5249, 526-533 (2004).
[CrossRef]

T. Blalock and S. Heveron-Smith, "Practical applications in film and optics measurements for dual light source interferometry," Proc. SPIE 5589, 107-113 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (3)

B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (New York: Marcel Dekker 2002).

M. A. Marcus, J. R. Lee, H. W. Harris, and R. Kelbe, "Apparatus for measuring Material Thickness Profiles," US Patent # 6067161 (2000).

M. A. Marcus, J. R. Lee, and H. W. Harris, "Method for measuring material thickness profiles," US Patent # 6038027 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Set-up.

Fig. 2.
Fig. 2.

Beams addition.

Fig. 3.
Fig. 3.

Correlation images with (a) the SLED source and (b) the supercontinuum.

Fig. 4.
Fig. 4.

Determination of the correlation peaks. (a) Subtracted image with the SLED. (b) Vertical filter and region of interest with the SLED. (c) Columns sum with the SLED. (d) Subtracted image with the supercontinuum. (e) Vertical filter and region of interest with the supercontinuum. (f) Columns sum with the supercontinuum.

Fig. 5.
Fig. 5.

Positions of the correlation peaks for calibration. (a) With the SLED. (b) With the supercontinuum.

Fig. 6
Fig. 6

Calibration curves for the two sources (a) SLED. (b) supercontinuum.

Fig. 7.
Fig. 7.

Results for the soft lens of -3.75D. (a) with the SLED, (b) with the supercontinuum.

Fig. 8.
Fig. 8.

Results for the soft lens of -4.75D. (a) with the SLED, (b) with the supercontinuum.

Fig. 9.
Fig. 9.

Results for the rigid lens of -4.5D. (a) with the SLED, (b) with the supercontinuum.

Tables (1)

Tables Icon

Table 1. Central thickness for the different contact lenses measured with the two optical sources

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Sc=Ss(r) Γ (v)
SLED:Ss(r)=S0 exp (r2a02) a01mm
Supercontinuum: Ss(r)=S0J1(ra1)a12mm
SLED:Γ(v)2 =Γ02 exp (4(vv0)2Δv2) with v0=3.6461014HzΔv1/e2=cλ02Δλ=1.731013Hz
Supercontinuum:Γ(v)2=Γ02 v [1.7;7]1014 H z
φR(v)=2πvc lR
φi(v)=2πvc(lT+2k=1i>1i1nkek)
SR(r,v)=αRSs(r)Γ(v)exp(j2πvclR)
Si(r,v)=αTSs(r)Γ(v)ri(k=1i>1i1tk2)exp(j2πvc(lT+2k=1i>1i1nkek))
ST(r,v)=S1(r,v) + S2 (r,v)=i=12Si(r,v)
=αTSs(r)Γ(v)[r1exp(j2πvclT)+r2t12exp(j2πvc(lT+2n1e1))]
S(r,v)=SR(r,v) exp [jψR(r,v)] + ST(r,v)exp[jψT(r,v)]
EC(r)=vCss(r,v)dv=vS(r,v)S*(r,v)dv
CSS(r,v)=SR(r,v)2+ST(r,v)2+SR(r,v)ST*(r,v)exp(jΔψ)+SR*(r,v)ST(r,v)exp(jΔψ)
Δψ=ψTψR=2π(Q˘+Qv) X
with Q˘=2N0cosθ'0cos(θ'pθ'0)andQ=2N0v0cosθ'0cos(θ'pθ'0)+1csin(θ'pθ'0)
Ec(X)=E0{1+K[K'cos(4πv0n1e1c)F(πΔv2n1e1c)+cos(4πv0cXsin(θ'pθ'0)+2πv0Δlc)F(πΔv(Δlc+QX))+Tcos(4πv0cXsin(θ'pθ'0)+2πv0Δl+2n1e1c)F(πΔv(Δl+2n1e1c+QX))]}
with: K=2αRαTRαR2+αT2R(1+T2)K'=αTαRTRΔl=lTlR
E0=S02Γ02 Δ v [αR2+αT2R(1+T2)]{J1(ra1)π2exp(r2a02)andF(x)={sinc(x)=sinxxcontinuumexp[(x2)2]SLED
ΔX=2λ02cΔλQ=λ02Δλ(N0λ0cosθ'0cos(θ'pθ'0)+sin(θ'pθ'0))1

Metrics