Abstract

We demonstrate a linearly field-modulated, direct-detected virtual SSB-OFDM (VSSB-OFDM) transmission with an RF tone placed at the edge of the signal band. By employing the iterative estimation and cancellation technique for the signal-signal beat interference (SSBI) at the receiver, our approach alleviates the need of the frequency gap, which is typically reserved for isolating the SSBI, and saves half the electrical bandwidth, thus being very spectrally efficient. We derive the theoretical model for the VSSB-OFDM system and detail the signal processing for the iterative approach conducted at the receiver. Possible limitations for this iterative approach are also given and discussed. We successfully transmit a 10 Gbps, 4-quadrature-amplitude-modulation (QAM) VSSB-OFDM signal through 340 km of uncompensated standard single mode fiber (SSMF) with almost no penalty. In addition, the simulated results show that the proposed scheme has an ~2 dB optical-signal-to-noise-ratio (OSNR) gain and has a better chromatic dispersion (CD) tolerance compared with the previous intensity-modulated SSB-OFDM system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
    [CrossRef]
  2. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  3. S. L. Jansen, I. Morita, and H. Tanaka, “10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000km of SSMF,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP2.
  4. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
    [CrossRef]
  5. Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CWN2.
  6. W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity,” LEOS’08, paper MH 3 (2008).
  7. W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, L. C. Christen, J. Y. Yang, K. M. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU2.
  8. D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OME7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OME7.
  9. W.-R. Peng and S. Chi, “Improving the transmission performance for an externally modulated baseband single sideband OFDM signal using nonlinear post-compensation and differential encoding schemes,” ECOC’07, paper P078 (2007).
  10. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
    [CrossRef]
  11. W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU1.
  12. V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. 18(4), 340–343 (1970).
    [CrossRef]
  13. R. van Nee, and R. Presad, OFDM for wireless multimedia communications. Norwood, MA: Artech House, 2000.
  14. W.-R. Peng, B. Zhang, X. Wu, K.-M. Feng, A. E. Willner, and S. Chi, “Experimental Demonstration of 1600 km SSMF Transmission of a Generalized Direct Detection Optical Virtual SSB-OFDM System,” ECOC’08 paper Mo3E6 (2008).
  15. F. Buchali and F. Supper, “Optimization of an optical OFDM system by peak to average signal ratio reduction,” ECOC’07 paper Tu. 5.2.4 (2007).
  16. S. J. Savory, Y. Benlachtar, R. I. Killey, P. Bayvel, G. Bosco, P. Poggiolini, J. Prat, and M. Omella, “IMDD transmission over 1,040 km of standard single mode fiber at 10 Gb/s using a one-sample-per-bit reduced complexity MLSE receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThK2.

2009 (1)

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

2008 (3)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[CrossRef] [PubMed]

1970 (1)

V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. 18(4), 340–343 (1970).
[CrossRef]

Arbab, V. R.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Armstrong, J.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

Bao, H.

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Chi, S.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Christen, L. C.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Cizek, V.

V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. 18(4), 340–343 (1970).
[CrossRef]

Feng, K.-M.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Lowery, A. J.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

Peng, W.-R.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Schmidt, B. J. C.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Shamee, B.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Shieh, W.

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Tang, Y.

Willner, A. E.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Wu, X.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

Yang, J.-Y.

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

IEEE J. Lightwave Technol. (2)

W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, “Theoretical and experimental investigations of direct-detected RF-tone assisted optical OFDM systems,” IEEE J. Lightwave Technol. 27(10), 1332–1339 (2009).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightwave Technol. 26(1), 196–203 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

IEEE Trans. Audio Electroacoust. (1)

V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. 18(4), 340–343 (1970).
[CrossRef]

Opt. Express (1)

Other (11)

S. L. Jansen, I. Morita, and H. Tanaka, “10x121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000km of SSMF,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP2.

W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU1.

Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWN2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CWN2.

W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity,” LEOS’08, paper MH 3 (2008).

W.-R. Peng, X. Wu, V. R. Arbab, B. Shamee, L. C. Christen, J. Y. Yang, K. M. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMU2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OMU2.

D. F. Hewitt, “Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OME7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OME7.

W.-R. Peng and S. Chi, “Improving the transmission performance for an externally modulated baseband single sideband OFDM signal using nonlinear post-compensation and differential encoding schemes,” ECOC’07, paper P078 (2007).

R. van Nee, and R. Presad, OFDM for wireless multimedia communications. Norwood, MA: Artech House, 2000.

W.-R. Peng, B. Zhang, X. Wu, K.-M. Feng, A. E. Willner, and S. Chi, “Experimental Demonstration of 1600 km SSMF Transmission of a Generalized Direct Detection Optical Virtual SSB-OFDM System,” ECOC’08 paper Mo3E6 (2008).

F. Buchali and F. Supper, “Optimization of an optical OFDM system by peak to average signal ratio reduction,” ECOC’07 paper Tu. 5.2.4 (2007).

S. J. Savory, Y. Benlachtar, R. I. Killey, P. Bayvel, G. Bosco, P. Poggiolini, J. Prat, and M. Omella, “IMDD transmission over 1,040 km of standard single mode fiber at 10 Gb/s using a one-sample-per-bit reduced complexity MLSE receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThK2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Operation principles for (a) previous intensity-modulated SSB-OFDM, and (b) proposed virtual SSB-OFDM (VSSB-OFDM).

Fig. 2
Fig. 2

Iterative estimation and cancellation technique of the VSSB-OFDM. SSBI: signal-signal beat interference, FFT: fast Fourier transform.

Fig. 3
Fig. 3

Optical spectra of the training symbols and the data symbols in a transmitted VSSB-OFDM packet.

Fig. 4
Fig. 4

Experimental setup for the virtual SSB-OFDM.

Fig. 5
Fig. 5

Measured EVM (OSNR = 18 dB) versus the iteration numbers with different CSPR values of 2, 6 and 10 dB.

Fig. 6
Fig. 6

Measured EVM (OSNR = 18 dB) versus the carrier to signal power ratio (CSPR) with the iteration number of Ni = 4.

Fig. 7
Fig. 7

Measured bit error rate versus the optical signal to noise ratio (0.1 nm) for the previous intensity-modulated SSB-OFDM and the proposed virtual SSB-OFDM with Ni = 4.

Fig. 8
Fig. 8

Simulated results for the previous intensity-modulated SSB-OFDM and the proposed virtual SSB-OFDM.

Fig. 9
Fig. 9

Simulated sensitivity curves for the proposed VSSB-OFDM with different OMI values and optical bandwidth (OBW). The curve labeled by “Ideal Estimator” uses an ideal SSBI estimator which can help completely remove the SSBI at the receiver.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E(n)=Ae-jπn+d(k)ej2πknN
ET(n)=αAAe-jπn+α(k)d(k)ej2πknN
I(n)=|ET(n)|2=|αAA|2+2Re[αA*A*α(k)d(k)ej2π(k+N/2)nN]+|α(k)d(k)ej2πknN|2
Ii(n)=1|αAA|2|H(k)di(k)ej2πknN|2=|α(k)di(k)ej2πknN|2
Ri+1(k)=FFT[I(n)-Ii(n)]/H(k)
IDC=|αAA|2+|α(k)d(k)|2
IDC|αA|2(|A|2+|d(k)|2)
|αAA|2IDC×CSPR/(1+CSPR)

Metrics