Abstract

A high speed physical random bit generator is applied for the first time to a gigahertz clocked quantum key distribution system. Random phase-modulation in a differential-phase-shift quantum key distribution (DPS-QKD) system is performed using a 1-Gbps random bit signal which is generated by a physical random bit generator with chaotic semiconductor lasers. Stable operation is demonstrated for over one hour, and sifted keys are successfully generated at a rate of 9.0 kbps with a quantum bit error rate of 3.2% after 25-km fiber transmission.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
    [Crossref]
  2. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. 29, 2797 (2004).
    [Crossref] [PubMed]
  3. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).
    [Crossref] [PubMed]
  4. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
    [Crossref]
  5. T. Honjo, S. Yamamoto, T. Yamamoto, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors,” Opt. Express 15, 15920–15927 (2007).
    [Crossref] [PubMed]
  6. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  7. R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  8. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008).
    [Crossref] [PubMed]
  9. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
    [Crossref]
  10. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68,022317 (2003).
    [Crossref]
  11. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
    [Crossref]
  12. B. Jun and P. Kocher, “The Intel random number generator,”, White paper prepared for Intel Corporation, Cryptography Research Inc. Available at http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf. (1999).
  13. W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
    [Crossref]
  14. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
    [Crossref]
  15. F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).
  16. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
    [Crossref]
  17. C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
    [Crossref]
  18. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).
  19. G. Marsaglia, “DIEHARD: A battery of tests of randomness,” Available at http://stat.fsu.edu/~geo (1996).
  20. K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single photon differential phase shift quantum key distribution,” arXiv:0806.2684v2 (2008).
  21. M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).
  22. T. Tsurumaru, “Sequential attack with intensity modulation on the differential-phase-shift quantum key distribution protocol,” Phys. Rev. A 75, 062319 (2007).
    [Crossref]

2008 (5)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16, 11354–11360 (2008).
[Crossref] [PubMed]

2007 (4)

T. Honjo, S. Yamamoto, T. Yamamoto, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors,” Opt. Express 15, 15920–15927 (2007).
[Crossref] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

T. Tsurumaru, “Sequential attack with intensity modulation on the differential-phase-shift quantum key distribution protocol,” Phys. Rev. A 75, 062319 (2007).
[Crossref]

2006 (3)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

2004 (1)

2003 (2)

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68,022317 (2003).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

2000 (1)

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

1997 (1)

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
[Crossref]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Asobe, M.

Baek, B.

Banks, D.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Barker, E.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Blaauw, D.

C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
[Crossref]

Bucci, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Connelly, J. A.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
[Crossref]

Cortigiani, F.

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Curty, M.

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Diamanti, E.

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Dowlatabadi, A. B.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
[Crossref]

Dray, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Dynes, J. F.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Fejer, M. M.

Fujiwara, M.

Germani, L.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Gisin, N

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

Heckert, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Holman, W. T.

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
[Crossref]

Honjo, T.

Inoue, K.

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Jun, B.

B. Jun and P. Kocher, “The Intel random number generator,”, White paper prepared for Intel Corporation, Cryptography Research Inc. Available at http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf. (1999).

Kamada, H.

Kocher, P.

B. Jun and P. Kocher, “The Intel random number generator,”, White paper prepared for Intel Corporation, Cryptography Research Inc. Available at http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf. (1999).

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Langrock, C.

Leigh, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Levenson, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Lo, H. K.

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

Lutkenhaus, N.

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

Luzzi, R.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Maeda, W.

Marsaglia, G.

G. Marsaglia, “DIEHARD: A battery of tests of randomness,” Available at http://stat.fsu.edu/~geo (1996).

Miki, S.

Mudge, T.

C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
[Crossref]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Nam, S. W.

Nambu, Y.

Nechvatal, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Nishida, Y.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Petri, C.

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

Rocchi, S.

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Rukhin, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Sasaki, M.

Sharpe, A. W.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

Shields, A. J.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Smid, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Soto, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Tadanaga, O.

Tajima, A.

Takahashi, H.

Takahashi, S.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).
[Crossref] [PubMed]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single photon differential phase shift quantum key distribution,” arXiv:0806.2684v2 (2008).

Tanaka, A.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

Tokunaga, C.

C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
[Crossref]

Tomita, A.

Trifiletti, A.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Tsurumaru, T.

T. Tsurumaru, “Sequential attack with intensity modulation on the differential-phase-shift quantum key distribution protocol,” Phys. Rev. A 75, 062319 (2007).
[Crossref]

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Vangel, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Varanouvo, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Vignoli, V.

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

Vo, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68,022317 (2003).
[Crossref]

Wang, Z.

Wen, K.

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single photon differential phase shift quantum key distribution,” arXiv:0806.2684v2 (2008).

Yamamoto, S.

Yamamoto, T.

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14, 13073–13082 (2006).
[Crossref] [PubMed]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68,022317 (2003).
[Crossref]

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single photon differential phase shift quantum key distribution,” arXiv:0806.2684v2 (2008).

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

Yoshino, K.

Yuan, Z. L.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

Zeller, S. C

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zhang, L. L. X.

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

Appl. Phys. Lett. (1)

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Appl. Phys. Letts. (1)

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Letts. 93, 031109 (2008).
[Crossref]

IEEE J. Solid-State Circuits (1)

C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based quality control,” IEEE J. Solid-State Circuits 43, 78–85 (2008).
[Crossref]

IEEE Trans. Circuits Syst. (1)

W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated analog/digital random noise source,” IEEE Trans. Circuits Syst. I 44, 521–528 (1997).
[Crossref]

IEEE Trans. Comput. (1)

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanouvo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52, 403–409 (2003).
[Crossref]

Nature Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over 40 dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).
[Crossref]

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N Gisin, ”Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (3)

T. Tsurumaru, “Sequential attack with intensity modulation on the differential-phase-shift quantum key distribution protocol,” Phys. Rev. A 75, 062319 (2007).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68,022317 (2003).
[Crossref]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73,012344 (2006).
[Crossref]

Quantum Information & Computation (1)

M. Curty, L. L. X. Zhang, H. K. Lo, and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quantum Information & Computation,  7 (7), 665–688 (2007).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74,145–195 (2002).
[Crossref]

The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) (1)

F. Cortigiani, C. Petri, S. Rocchi, and V. Vignoli, “Very high-speed true random noise generator,” The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000 (ICECS 2000) 1, 120–123 (2000).

Other (4)

B. Jun and P. Kocher, “The Intel random number generator,”, White paper prepared for Intel Corporation, Cryptography Research Inc. Available at http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf. (1999).

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, Special Publication 800-22 Revision 1 (2008).

G. Marsaglia, “DIEHARD: A battery of tests of randomness,” Available at http://stat.fsu.edu/~geo (1996).

K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single photon differential phase shift quantum key distribution,” arXiv:0806.2684v2 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of differential-phase-shift QKD. LD, laser diode; IM, intensity modulator; PM, phase modulator; ATT, attenuator; MZI, Mach-Zehnder interferometer.

Fig. 2.
Fig. 2.

Schematic diagram of physical random bit generator with two chaotic lasers: LD, laser diode; FC, fiber coupler; VR, variable reflector; VA, variable attenuator; PD, photo diode; Amp, Amplifier; Synth, Synthesizer; ADC, analog-digital converter.

Fig. 3.
Fig. 3.

Experimental setup: LD, laser diode; IM, intensity modulator; PG, pulse generator; PM, phase modulator; ATT, attenuator; PLC-MZI, planar lightwave circuit Mach-Zehnder interferometer; Synth, synthesizer; CD, clock divider; RBG, random bit generator; PD, photo diode; TIA, time interval analyzer; PC, personal computer.

Fig. 4.
Fig. 4.

Experimental results of quantum bit error rate (QBER) and sifted key generation rate.

Fig. 5.
Fig. 5.

Experimental result of occurrences of “1” bits for the fast physical random bit generator used in the QKD experiment.

Tables (1)

Tables Icon

Table 1. Results of NIST Special Publication 800-22 statistical tests. For “Success” using 1000 samples of 1 Mbit data and significance level α = 0.01, the P-value (uniformity of p-values) should be larger than 0.0001 and the proportion should be in the range of 0.99 ± 0.0094392. For the tests which produce multiple P-values and proportions, the worst case is shown.

Metrics