Abstract

We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR3) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low Vπ MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
    [CrossRef]
  2. C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
    [CrossRef]
  3. M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
    [CrossRef]
  4. L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
    [CrossRef]
  5. M. T. Abuelma'Atti, “Large signal analysis of the Mach-Zehnder modulator with variable bias,” Proc. Natl. Sci. Counc. ROC(A) 25, 254–258 (2001).
  6. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
    [CrossRef]
  7. M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
    [CrossRef]
  8. V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach-Zehnder modulator followed by an Erbium-doped fiber amplifier,” accepted for publication in IEEE J. Lightwave Technol.
  9. W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
    [CrossRef]
  10. E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
    [CrossRef]
  11. D. Rollins, “Linearized optical link using a single Mach-Zehnder modulator and two optical carriers,” United States Patent No. 7,079,780, 2006.
  12. V. Poudyal and M. Mezhoudi, “Wavelength sensitivity of Ti:LiNbO3 Mach-Zehnder interferometer,” Proc. SPIE 2291, 196–207 (1994).
    [CrossRef]
  13. V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
    [CrossRef]
  14. D. M. Pozar, Microwave Engineering (Wiley 2005) .

2007 (2)

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[CrossRef]

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

2006 (2)

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
[CrossRef]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

2001 (1)

M. T. Abuelma'Atti, “Large signal analysis of the Mach-Zehnder modulator with variable bias,” Proc. Natl. Sci. Counc. ROC(A) 25, 254–258 (2001).

1999 (1)

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

1998 (1)

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

1997 (1)

L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
[CrossRef]

1996 (1)

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
[CrossRef]

1994 (1)

V. Poudyal and M. Mezhoudi, “Wavelength sensitivity of Ti:LiNbO3 Mach-Zehnder interferometer,” Proc. SPIE 2291, 196–207 (1994).
[CrossRef]

1977 (1)

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
[CrossRef]

Abuelma'Atti, M. T.

M. T. Abuelma'Atti, “Large signal analysis of the Mach-Zehnder modulator with variable bias,” Proc. Natl. Sci. Counc. ROC(A) 25, 254–258 (2001).

Ackerman, E.

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

Bucholtz, F.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

Burns, W. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
[CrossRef]

Cassaboom, J. A.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
[CrossRef]

Chang, C.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
[CrossRef]

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[CrossRef]

Esman, R. D.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Estman, R. D.

L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
[CrossRef]

Giaccari, P.

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

Gopalakrishnan, G. K.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
[CrossRef]

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[CrossRef]

LaRochelle, S.

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
[CrossRef]

Livingston, M.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Mezhoudi, M.

V. Poudyal and M. Mezhoudi, “Wavelength sensitivity of Ti:LiNbO3 Mach-Zehnder interferometer,” Proc. SPIE 2291, 196–207 (1994).
[CrossRef]

Moeller, R. P.

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
[CrossRef]

Nichols, L. T.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
[CrossRef]

Parent, M. G.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Poudyal, V.

V. Poudyal and M. Mezhoudi, “Wavelength sensitivity of Ti:LiNbO3 Mach-Zehnder interferometer,” Proc. SPIE 2291, 196–207 (1994).
[CrossRef]

Rogge, M. S.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

Roman, J. E.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Rusch, L. A.

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
[CrossRef]

Sisto, M. M.

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
[CrossRef]

Tavik, G. C.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Taylor, H. F.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
[CrossRef]

Urick, V. J.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

Wiliams, K. J.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

Williams, K. J.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
[CrossRef]

Electron. Lett. (1)

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett. 13(22), 678–680 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. M. Sisto, S. LaRochelle, and L. A. Rusch, “Carrier-to-noise ratio optimization by modulator bias control in radio-over-fiber links,” IEEE Photon. Technol. Lett. 18(17), 1840–1842 (2006).
[CrossRef]

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[CrossRef]

M. M. Sisto, S. LaRochelle, L. A. Rusch, and P. Giaccari, “Erbium amplifier dynamics in wireless analog optical links with modulator bias optimization,” IEEE Photon. Technol. Lett. 19(6), 408–410 (2007).
[CrossRef]

W. K. Burns, G. K. Gopalakrishnan, and R. P. Moeller, “Multi-octave operation of low-biased modulators by balanced detection,” IEEE Photon. Technol. Lett. 8(1), 130–132 (1996).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

E. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microw. Theory Tech. 47(12), 2271–2279 (1999).
[CrossRef]

L. T. Nichols, K. J. Williams, and R. D. Estman, “Optimizing the ultrawide-band photonic link,” IEEE Trans. Microw. Theory Tech. 45(8), 1384–1389 (1997).
[CrossRef]

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech. 46(12), 2317–2323 (1998).
[CrossRef]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly-compressed Erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[CrossRef]

Proc. Natl. Sci. Counc. ROC(A) (1)

M. T. Abuelma'Atti, “Large signal analysis of the Mach-Zehnder modulator with variable bias,” Proc. Natl. Sci. Counc. ROC(A) 25, 254–258 (2001).

Proc. SPIE (1)

V. Poudyal and M. Mezhoudi, “Wavelength sensitivity of Ti:LiNbO3 Mach-Zehnder interferometer,” Proc. SPIE 2291, 196–207 (1994).
[CrossRef]

Other (3)

D. M. Pozar, Microwave Engineering (Wiley 2005) .

D. Rollins, “Linearized optical link using a single Mach-Zehnder modulator and two optical carriers,” United States Patent No. 7,079,780, 2006.

V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased Mach-Zehnder modulator followed by an Erbium-doped fiber amplifier,” accepted for publication in IEEE J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The transmittance of (a) single output and (b) dual-output Mach-Zehnder modulator as a function of DC bias phase shift φdc. The phase shift points of low and high bias are marked.

Fig. 2
Fig. 2

The transmittance of two wavelengths through a wavelength sensitive Mach-Zehnder modulator as a function of bias voltage.

Fig. 3
Fig. 3

The architecture for even-order harmonic cancellation employing a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs. PD: photodetector, MUX: wavelength division multiplexer, DEMUX: wavelength division demuliplexer, EDFA: erbium-doped fiber amplifier.

Fig. 4
Fig. 4

The measured optical output power of the Mach-Zehnder modulator as a function of DC bias voltage for two wavelengths, one at 1550.1 nm and the other at 1555.6 nm.

Fig. 5
Fig. 5

The transfer curve of an MZM as a function of phase bias for (a) single output and (b) dual output.

Fig. 6
Fig. 6

The transfer curves for dual wavelength inputs with a 0.42π phase difference for (a) single output MZM and (b) dual output MZM.

Fig. 7
Fig. 7

The transfer curves for dual wavelength inputs with a 0.5π phase difference for (a) single output MZM and (b) dual output MZM.

Fig. 8
Fig. 8

The RF output power of the link for the (a) fundamental at 10 MHz and (b) second harmonic at 20 MHz, with either laser on (Laser 1, Laser 2) or both simultaneously (WDM).

Fig. 9
Fig. 9

Fundamental (triangles) and third harmonic (squares) response for link at 10 MHz.

Fig. 10
Fig. 10

The RF output power of the link for the (a) fundamental at 100 MHz and (b) second harmonic at 200 MHz, with either laser on (Laser 1, Laser 2) or both simultaneously (WDM).

Fig. 11
Fig. 11

The RF output power of the link for the (a) fundamental at 1 GHz and (b) second harmonic at 2 GHz, with either laser on (Laser 1, Laser 2) or both simultaneously (WDM).

Fig. 12
Fig. 12

The theoretical RF gain for a single and two wavelength input to a Mach-Zehnder modulator as a function of normalized DC bias voltage.

Tables (1)

Tables Icon

Table 1 Experimental parameters for theoretical calculation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ioutput1(φdc,λ1,t)=12Goζ(1cos(φdc,λ1)J0(φrf))                                             +Goζsin(φdc,λ1)n=0J2n+1(φrf)sin((2n+1)Ωt)                                             Goζcos(φdc,λ1)n=1J2n(φrf)cos(2nΩt)
Ioutput2(φdc,λ2,t)=12Goζ(1+cos(φdc,λ2)J0(φrf))                                             Goζsin(φdc,λ2)n=0J2n+1(φrf)sin((2n+1)Ωt)                                             +Goζcos(φdc,λ2)n=1J2n(φrf)cos(2nΩt)
φdc,λ2=πφdc,λ1.
Iλ2Iλ1=2Goζsin(φdc,λ1)n=0J2n+1(φrf)sin((2n+1)Ωt).
Prf,fund(φdc)=12Ifund2Zout=12(Goζ)2sin2(φdc)J12(φrf)Zout,
Go=Go,ss1+Go,ssPmzm2Po,max,
Go, two wavelength=Go,ss1+Go,ssPmzmPo,max,
Iλ1,fundIλ2,fund=Go, two wavelengthζsin(φdc,λ1)J1(φrf),
Prf, fund, two wavelength(φdc)=12Ifund2Zout=12(Go, two wavelengthζ)2sin2(φdc,λ1)J12(φrf)Zout.
Grf(φdc)=(Goζπ)2sin2(φdc)ZinZout4Vπ,rf2,

Metrics