Abstract

The wavelength dependent transmission performance of adaptively modulated optical OFDM (AMOOFDM) signals is investigated, for the first time, over optical amplification- and chromatic dispersion compensation-free IMDD SMF systems using semiconductor optical amplifiers (SOAs) as intensity modulators. A theoretical SOA model describing both optical gain saturation and gain spectral dynamics is developed, based on which optimum SOA operating conditions are identified for various wavelengths varying in a broad range of 1510nm–1590nm. Results show that, SOA intensity modulators operating at the identified optimum conditions enable the realization of colourless AMOOFDM transmitters within the aforementioned wavelength window. Such transmitters are capable of supporting >30Gb/s signal transmission over 60km SMFs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Grobe and J.-P. Elbers, "PON in adolescence: from TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
    [CrossRef]
  2. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
    [CrossRef]
  3. K. Iwatsuki, J.-I. Kani, H. Suzuki, and M. Fujiwara, "Access and metro networks based on WDM technologies," J. Lightwave Technol. 22, 2623-2630 (2004).
    [CrossRef]
  4. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, "Extended-reach PON employing 10Gb/s integrated reflective EAM-SOA," in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), paper Th.2.F.1.
  5. J. M. Tang, P. M. Lane, and K. A. Shore, "High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006).
    [CrossRef]
  6. W. Shieh, H. Bao and Y. Yang, "Coherent optical OFDM: theory and design," Opt. Express 16, 841-859 (2008).
    [CrossRef] [PubMed]
  7. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
    [CrossRef]
  8. B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightwave Technol. 26, 196-203 (2008).
    [CrossRef]
  9. X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
    [CrossRef]
  10. X. Zheng, J. L. Wei, and J. M. Tang, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks," Opt. Express 16, 20427-20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427.
    [CrossRef] [PubMed]
  11. J. M. Tang and K. A. Shore, "30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006).
    [CrossRef]
  12. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, "100 Gbit/s transmission using single-band direct-detection optical OFDM," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPC3.
  13. T. N. Duong, N. Genay, B. Charbonnier, P. Urvoas, P. Chanclou, and A. Pizzinat, "Experimental demonstration of 10Gbit/s transmission over 110km SMF by direct modulation of 2 GHz bandwidth DFB laser using discrete multi-tone modulation for passive optical network," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper NMB3.
  14. J. L. Wei, X. Q. Jin, and J. M. Tang, "The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems," J. Lightwave Technol. (accepted for publication).
  15. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).
  16. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, "Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture," in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
    [CrossRef]
  17. J. M. Tang and K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998).
    [CrossRef]
  18. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightwave Technol. 16, 78-85 (1998).
    [CrossRef]
  19. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
    [CrossRef]
  20. G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).
  21. J. M. Tang and K. A. Shore, "Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters," J. Lightwave Technol. 25, 787-798 (2007).
    [CrossRef]
  22. P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
    [CrossRef]
  23. S.-L. Lee, "Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers," IEEE J. Quantum Electron. 7, 201-209 (2001).
    [CrossRef]
  24. R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
    [CrossRef]

2008 (6)

2007 (1)

2006 (2)

2004 (1)

2001 (2)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

S.-L. Lee, "Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers," IEEE J. Quantum Electron. 7, 201-209 (2001).
[CrossRef]

2000 (1)

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

1998 (3)

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

J. M. Tang and K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998).
[CrossRef]

K. Obermann, S. Kindt, D. Breuer, and K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightwave Technol. 16, 78-85 (1998).
[CrossRef]

1989 (1)

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Adesida, I.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Armstrong, J.

Bao, H.

Breuer, D.

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Caneau, C.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Chandrasekhar, S.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Elbers, J.-P.

K. Grobe and J.-P. Elbers, "PON in adolescence: from TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
[CrossRef]

Fay, P.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Fujiwara, M.

Giddings, R. P.

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).

Grobe, K.

K. Grobe and J.-P. Elbers, "PON in adolescence: from TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
[CrossRef]

Guekos, G.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

Gutiérrez-Castrejón, R.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

Hamié, A.

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Iwatsuki, K.

Jin, X. Q.

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

J. L. Wei, X. Q. Jin, and J. M. Tang, "The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems," J. Lightwave Technol. (accepted for publication).

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Kani, J.-I.

Kindt, S.

Lane, P. M.

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Lee, S.-L.

S.-L. Lee, "Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers," IEEE J. Quantum Electron. 7, 201-209 (2001).
[CrossRef]

Lowery, A. J.

Mahajan, A.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Obermann, K.

Occhi, L.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

Olsson, N. A.

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

K. Obermann, S. Kindt, D. Breuer, and K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightwave Technol. 16, 78-85 (1998).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Schares, L.

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

Schmidt, B. J. C.

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Shieh, W.

Shore, K. A.

Spencer, P. S.

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

Suzuki, H.

Tang, J. M.

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks," J. Opt. Netw. 7, 198-214 (2008).
[CrossRef]

X. Zheng, J. L. Wei, and J. M. Tang, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks," Opt. Express 16, 20427-20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427.
[CrossRef] [PubMed]

J. M. Tang and K. A. Shore, "Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters," J. Lightwave Technol. 25, 787-798 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, "30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, "High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006).
[CrossRef]

J. M. Tang and K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).

J. L. Wei, X. Q. Jin, and J. M. Tang, "The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems," J. Lightwave Technol. (accepted for publication).

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

Wei, J. L.

X. Zheng, J. L. Wei, and J. M. Tang, "Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks," Opt. Express 16, 20427-20440 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20427.
[CrossRef] [PubMed]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).

J. L. Wei, X. Q. Jin, and J. M. Tang, "The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems," J. Lightwave Technol. (accepted for publication).

Wohlmuth, W.

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

Yang, Y.

Zheng, X.

Electron. Lett. (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett. 37, 1181-1182 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

K. Grobe and J.-P. Elbers, "PON in adolescence: from TDMA to WDM-PON," IEEE Commun. Mag. 46, 26-34 (2008).
[CrossRef]

IEEE J. Quantum Electron. (3)

S.-L. Lee, "Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers," IEEE J. Quantum Electron. 7, 201-209 (2001).
[CrossRef]

R. Gutiérrez-Castrejón, L. Schares, L. Occhi, and G. Guekos, "Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length," IEEE J. Quantum Electron. 36, 1476-1484 (2000).
[CrossRef]

J. M. Tang and K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler and K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
[CrossRef]

P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, "Low-noise performance of monolithically integrated 12-Gb/s p-i-n/HEMT photoreceiver for long-wavelength transmission systems," IEEE Photon. Technol. Lett. 10, 713-715 (1998).
[CrossRef]

J. Lightwave Technol. (9)

J. M. Tang and K. A. Shore, "Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters," J. Lightwave Technol. 25, 787-798 (2007).
[CrossRef]

B. J. C. Schmidt, A. J. Lowery and J. Armstrong, "Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM," J. Lightwave Technol. 26, 196-203 (2008).
[CrossRef]

K. Iwatsuki, J.-I. Kani, H. Suzuki, and M. Fujiwara, "Access and metro networks based on WDM technologies," J. Lightwave Technol. 22, 2623-2630 (2004).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, "High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs," J. Lightwave Technol. 24, 429-441 (2006).
[CrossRef]

K. Obermann, S. Kindt, D. Breuer, and K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightwave Technol. 16, 78-85 (1998).
[CrossRef]

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

J. M. Tang and K. A. Shore, "30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation," J. Lightwave Technol. 24, 2318-2327 (2006).
[CrossRef]

J. L. Wei, X. Q. Jin, and J. M. Tang, "The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems," J. Lightwave Technol. (accepted for publication).

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, "Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems," J. Lightwave Technol. (accepted for publication).

J. Opt. Netw. (1)

Opt. Express (2)

Other (5)

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, "Extended-reach PON employing 10Gb/s integrated reflective EAM-SOA," in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), paper Th.2.F.1.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, "Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture," in European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
[CrossRef]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, "100 Gbit/s transmission using single-band direct-detection optical OFDM," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPC3.

T. N. Duong, N. Genay, B. Charbonnier, P. Urvoas, P. Chanclou, and A. Pizzinat, "Experimental demonstration of 10Gbit/s transmission over 110km SMF by direct modulation of 2 GHz bandwidth DFB laser using discrete multi-tone modulation for passive optical network," Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper NMB3.

G. P. Agrawal, Fibre-Optic Communication Systems, (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Transmission system diagram together with block diagrams of the transmitter and the receiver.

Fig. 2.
Fig. 2.

SOA optical gain spectra for different bias currents and optical input powers. (a) An optical input power of −20dBm, (b) An optical input power of 0dBm and (c) An optical input power of 20dBm.

Fig. 3.
Fig. 3.

SOA optical gain versus bias current for different optical input powers and CW wavelengths.

Fig. 4.
Fig. 4.

Signal line rate as a function of CW wavelength for different optical input powers.

Fig. 5.
Fig. 5.

SOA effective carrier lifetime (a) and AMOOFDM signal extinction ratio (b) versus CW wavelength for different optical input powers.

Fig. 6.
Fig. 6.

SOA saturation energy as a function of CW wavelength.

Fig. 7.
Fig. 7.

Contour plots of signal line rate as a function of CW optical input power and bias current for different CW wavelengths.

Fig. 8.
Fig. 8.

Signal line rate versus PTP value of driving current for different CW wavelengths.

Fig. 9.
Fig. 9.

Signal capacity versus reach performance for different CW wavelengths.

Tables (1)

Tables Icon

Table 1. SOA, SMF and PIN Parameters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

A ( z , T ) = P ( z , T ) exp [ ( z , T ) ]
d h i ( T ) dT = g s , i ( T ) L h i ( T ) τ c P in , i ( T ) E sat , i { exp [ h i ( T ) ] 1 }
P out , i ( T ) = P in , i ( T ) exp [ h i ( T ) ]
ϕ out , i ( T ) = ϕ in , i ( T ) 1 2 α h i ( T )
h i ( T ) = 0 L g i ( z , T ) dz
G dB , I ( λ i , T ) = [ a g ( λ i ) b g ( λ i ) ] G dB ( λ max ) + b g ( λ i ) G dB , I ( λ max , T )
G dB , I ( λ max , T ) = Γ a ( λ max ) N 0 ( λ max ) [ I ( T ) I 0 ( λ max ) 1 ]
a g ( λ i ) = m 2 ( λ i λ max ) 2 + 1
b g ( λ i ) = n 2 ( λ i λ max ) 2 + n 1 ( λ i λ max ) + 1
P ASE , i = { N f exp [ h i ( T ) ] 1 } B 0 ħ ω i
R signal = k = 2 M s s k = k = 2 M s n k T b = r s k = 2 M s n k 2 M s ( 1 + η )
BER T = k = 2 M s E n k k = 2 M s B i t k
τ e , i = 1 1 / τ c + P out , i / E sat , i
R ext = i = 1 K 1 A 2 ( i Δ T ) A 2 ( j Δ T ) P ¯ K 1 j = 1 K 1 A 2 ( j Δ T ) A 2 ( j Δ T ) < P ¯ K 2
P ¯ = m = 1 K 1 + K 2 A 2 ( m Δ T ) K 1 + K 2

Metrics