Abstract

All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80μm is also reported, which can be coiled in 76cm diameter coils.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 32(1), 36–39 (1961).
    [CrossRef]
  2. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakonsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12, 1313–1319 (2004).
    [CrossRef] [PubMed]
  3. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13, 1055–1058 (2005).
    [CrossRef] [PubMed]
  4. O. Schmidt, J. Rothhardt, T. Eidam, F. Röser, J. Limpert, A. Tünnermann, K. P. Hansen, C. Jakobsen, and J. Broeng, “Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber,” Opt. Express 16(6), 3918–3923 (2008).
    [CrossRef] [PubMed]
  5. C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
    [CrossRef]
  6. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [CrossRef]
  7. L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. K. Thomas, M. Moore, L. Fu, and M. E. Fermann, Robust and practical optical fibers for single mode operation with core diameters up to 170µm, ” CLEO, post-deadline paper CPDB6, san Jose, 2008.
  8. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [CrossRef]
  9. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO, paper CThG1, 2005.
  10. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
    [CrossRef] [PubMed]
  11. Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
    [CrossRef]
  12. A. M. Thomas, D. Alterman, and M. S. Bowers, “High peak power short-pulse fiber lasers for material processing, ” SPIE Photonics West, 7195–43, San Jose, 2009.
  13. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
    [CrossRef] [PubMed]
  14. J. M. Fini, “Bend-resistant design of conventional and microstructured fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [CrossRef] [PubMed]

2009 (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

2008 (1)

2007 (1)

Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
[CrossRef]

2006 (2)

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

J. M. Fini, “Bend-resistant design of conventional and microstructured fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

1998 (1)

1961 (1)

E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 32(1), 36–39 (1961).
[CrossRef]

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Cormier, E.

Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
[CrossRef]

Courjaud, A.

Deguil-Robin, N.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

Dong, L.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Eidam, T.

Fermann, M. E.

Fini, J. M.

Fu, L.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Hansen, K. P.

Hönninger, C.

Jakobsen, C.

Jakonsen, C.

Li, J.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Liem, A.

Limpert, J.

Manek-Hönninger, I.

McKay, H. A.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Mottay, E.

Nolte, S.

Petersson, A.

Reich, M.

Rigail, P.

Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
[CrossRef]

Röser, E.

Röser, F.

Rothhardt, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Snitzer, E.

E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 32(1), 36–39 (1961).
[CrossRef]

Tünnermann, A.

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Zaouter, Y.

Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
[CrossRef]

Zellmer, H.

Appl. Phys. Lett. (1)

C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-Glass Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

J. Appl. Phys. (1)

E. Snitzer, “Proposed fiber cavities for optical masers,” J. Appl. Phys. 32(1), 36–39 (1961).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

Y. Zaouter, E. Cormier, P. Rigail, C. Hönninger, and E. Mottay, “30W, 10µJ, 10ps, SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fiber amplifier,” Proc. SPIE 6453, 64530O (2007).
[CrossRef]

Other (3)

A. M. Thomas, D. Alterman, and M. S. Bowers, “High peak power short-pulse fiber lasers for material processing, ” SPIE Photonics West, 7195–43, San Jose, 2009.

L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. K. Thomas, M. Moore, L. Fu, and M. E. Fermann, Robust and practical optical fibers for single mode operation with core diameters up to 170µm, ” CLEO, post-deadline paper CPDB6, san Jose, 2008.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” CLEO, paper CThG1, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross section of (a) LCF1 and (b) LCF2.

Fig. 2
Fig. 2

(a) Output powers versus pump powers and (b) pulse spectra at various peak powers from 5.2m LCF1.

Fig. 3
Fig. 3

(a) Near field mode pattern at low power, (b) 3D near field mode pattern, (c) mode line scan along x, and (d) mode line scan along y in LCF1.

Fig. 4
Fig. 4

Output powers versus launched powers in two samples of LCF2. Inset shows the near field mode pattern at 14W output power.

Fig. 5
Fig. 5

(a) Measured and simulated spectra from 4m long LCF2, (b) simulated pulse temporal shapes and (c) chirps

Fig. 6
Fig. 6

(a) Measured and simulated 10dB bandwidth of the output spectra versus pulse energies, and (b) wide spectral scan at the high pulse energies.

Fig. 7
Fig. 7

(a) Cross section of the passive PM LCF; (b) close-in cross section, (c) near field from the 1.8m long fiber in a 40cm diameter coil; (d) near field from the 30m long fiber in a 40cm diameter coil.

Fig. 8
Fig. 8

(a) Bend loss of the passive PM LCF measured with a 5m long sample; (b) PER and birefringence from a 1.8m long sample; (c) PER from a 30m long fiber in a 40cm diameter coil. Angle is relative to the fast axis.

Fig. 9
Fig. 9

(a) Cross section of the ytterbium-doped PM LCF with 80µm core; (b) average output powers versus launched pump powers.

Fig. 10
Fig. 10

(a) Pulse spectra at various output powers; (b) a wide scan of the output spectra at the maximum output power of 32.5W.

Metrics