Abstract

A dual channel dual focus spectral-domain optical coherence tomography was developed for imaging the accommodation of the eye in real time. The system can provide simultaneous cross-sectional imaging of all the surfaces of the anterior segment of the eye including the cornea, anterior chamber, anterior and posterior surfaces of the crystalline lens. Thus, the modification of the curvatures of the anterior and posterior surfaces of the crystalline lens and the dimensions of the anterior segment of the eye with accommodation can be calculated. The system was successfully tested in imaging accommodation. The preliminary results demonstrated the feasibility of this novel approach.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, “Ueber die Accommodation des Auges,” Albrecht von Graefes Arch Ophthalmo 2(1), 1–74 (1855).
    [CrossRef]
  2. R. A. Schachar, “Is Helmholtz’s theory of accommodation correct?” Ann. Ophthalmol. 31, 10–17 (1999).
  3. D. J. Coleman, “Unified model for accommodative mechanism,” Am. J. Ophthalmol. 69(6), 1063–1079 (1970).
    [PubMed]
  4. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
    [CrossRef] [PubMed]
  5. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
    [PubMed]
  6. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
    [CrossRef] [PubMed]
  7. W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
    [CrossRef] [PubMed]
  8. J. S. Wolffsohn and L. N. Davies, “Advances in anterior segment imaging,” Curr. Opin. Ophthalmol. 18(1), 32–38 (2007).
    [CrossRef]
  9. T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
    [CrossRef] [PubMed]
  10. A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci. 80(5), 383–394 (2003).
    [CrossRef] [PubMed]
  11. H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
    [CrossRef] [PubMed]
  12. J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [CrossRef]
  13. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
    [CrossRef] [PubMed]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  15. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
    [CrossRef]
  16. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  17. J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).
  18. B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
    [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
    [CrossRef] [PubMed]
  20. P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
    [CrossRef]
  21. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
    [CrossRef] [PubMed]
  22. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  23. E. Gotzinger, M. Pircher, R. A. Leitgeb, B. Baumann, and C. K. Hitzenberger, “Quadruple depth range spectral domain optical coherence tomography for imaging of the anterior eye segment,” presented at the SPIE Photonics West on Bios, San Jose, CA, USA, 24–29 Jan. 2009.
  24. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [CrossRef] [PubMed]
  25. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007).
    [CrossRef] [PubMed]
  26. B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16(4), 2405–2414 (2008).
    [CrossRef] [PubMed]
  27. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
    [CrossRef]
  28. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
    [CrossRef] [PubMed]
  29. A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007).
    [CrossRef] [PubMed]
  30. W. Nolan, “Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography,” Curr. Opin. Ophthalmol. 19(2), 115–121 (2008).
    [CrossRef] [PubMed]
  31. J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
    [CrossRef] [PubMed]
  32. G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
    [CrossRef] [PubMed]
  33. G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
    [CrossRef] [PubMed]
  34. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
    [CrossRef] [PubMed]
  35. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
    [CrossRef]
  36. J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
    [CrossRef]
  37. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
    [CrossRef]
  38. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
    [PubMed]

2009

2008

B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16(4), 2405–2414 (2008).
[CrossRef] [PubMed]

W. Nolan, “Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography,” Curr. Opin. Ophthalmol. 19(2), 115–121 (2008).
[CrossRef] [PubMed]

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[CrossRef] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[CrossRef] [PubMed]

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[CrossRef] [PubMed]

2007

2006

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

2005

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[CrossRef] [PubMed]

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

2004

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[CrossRef]

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[CrossRef] [PubMed]

T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
[CrossRef] [PubMed]

2003

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci. 80(5), 383–394 (2003).
[CrossRef] [PubMed]

2002

J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
[PubMed]

1999

R. A. Schachar, “Is Helmholtz’s theory of accommodation correct?” Ann. Ophthalmol. 31, 10–17 (1999).

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

1997

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

1996

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

1995

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

1994

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1970

D. J. Coleman, “Unified model for accommodative mechanism,” Am. J. Ophthalmol. 69(6), 1063–1079 (1970).
[PubMed]

1855

H. Helmholtz, “Ueber die Accommodation des Auges,” Albrecht von Graefes Arch Ophthalmo 2(1), 1–74 (1855).
[CrossRef]

Akiba, M.

Anderson, D. F.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007).
[CrossRef] [PubMed]

Asrani, S.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

Baikoff, G.

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

Bajraszewski, T.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Barr, H.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Barry, J. C.

T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
[CrossRef] [PubMed]

Baumann, B.

Bazant-Hegemark, F.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Bullimore, M. A.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[CrossRef] [PubMed]

Chalita, M. R.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[CrossRef] [PubMed]

Chong, C.

Coleman, D. J.

D. J. Coleman, “Unified model for accommodative mechanism,” Am. J. Ophthalmol. 69(6), 1063–1079 (1970).
[PubMed]

Cook, C. A.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

Davies, L. N.

J. S. Wolffsohn and L. N. Davies, “Advances in anterior segment imaging,” Curr. Opin. Ophthalmol. 18(1), 32–38 (2007).
[CrossRef]

de Boer, J. F.

Dubbelman, M.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

Dunne, M.

T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
[CrossRef] [PubMed]

Fercher, A. F.

Ferraz, C.

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

Findl, O.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Glasser, A.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci. 80(5), 383–394 (2003).
[CrossRef] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

Goldsmith, J. A.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Götzinger, E.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hattersley, S.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[CrossRef]

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmholtz, H.

H. Helmholtz, “Ueber die Accommodation des Auges,” Albrecht von Graefes Arch Ophthalmo 2(1), 1–74 (1855).
[CrossRef]

Hitzenberger, C. K.

Holmes, J.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[CrossRef]

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

Hossain, P.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007).
[CrossRef] [PubMed]

Huang, D.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ishikawa, H.

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[CrossRef] [PubMed]

Itoh, M.

Izatt, J. A.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[CrossRef] [PubMed]

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
[PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Kaluzny, B. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Kaluzny, J. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).

Kaluzy, B. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Kaufman, P. L.

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

Kerbage, C.

Kirschkamp, T.

T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
[CrossRef] [PubMed]

Konstantopoulos, A.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007).
[CrossRef] [PubMed]

Koretz, J. F.

Kowalczyk, A.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).

Leitgeb, R. A.

Li, Y.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Lim, H.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lutun, E.

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Marcos, S.

Morosawa, A.

Mujat, M.

Nolan, W.

W. Nolan, “Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography,” Curr. Opin. Ophthalmol. 19(2), 115–121 (2008).
[CrossRef] [PubMed]

Patil, C. A.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Pircher, M.

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

Richdale, K.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[CrossRef] [PubMed]

Rollins, A. M.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
[PubMed]

Rosales, P.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

Sakai, T.

Sarunic, M. V.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[CrossRef] [PubMed]

Schachar, R. A.

R. A. Schachar, “Is Helmholtz’s theory of accommodation correct?” Ann. Ophthalmol. 31, 10–17 (1999).

Schuman, J. S.

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Semmlow, J. L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stone, N.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Strenk, L. M.

Strenk, S. A.

Sun, W.

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Szkulmowski, M.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Szlag, D.

Targowski, P.

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

Vilupuru, A. S.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci. 80(5), 383–394 (2003).
[CrossRef] [PubMed]

Wei, J.

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

Westphal, V.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
[PubMed]

Wojtkowski, M.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).

Wolffsohn, J. S.

J. S. Wolffsohn and L. N. Davies, “Advances in anterior segment imaging,” Curr. Opin. Ophthalmol. 18(1), 32–38 (2007).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Zadnik, K.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[CrossRef] [PubMed]

Albrecht von Graefes Arch Ophthalmo

H. Helmholtz, “Ueber die Accommodation des Auges,” Albrecht von Graefes Arch Ophthalmo 2(1), 1–74 (1855).
[CrossRef]

Am. J. Ophthalmol.

D. J. Coleman, “Unified model for accommodative mechanism,” Am. J. Ophthalmol. 69(6), 1063–1079 (1970).
[PubMed]

Ann. Ophthalmol.

R. A. Schachar, “Is Helmholtz’s theory of accommodation correct?” Ann. Ophthalmol. 31, 10–17 (1999).

Arch. Ophthalmol.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008).
[CrossRef] [PubMed]

Br. J. Ophthalmol.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol. 91(4), 551–557 (2007).
[CrossRef] [PubMed]

Clin. Exp. Optom.

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[CrossRef] [PubMed]

Cornea

B. J. Kaluzny, B. J. Kaluzy, J. J. Ka?uzny, A. Szkulmowska, I. Gorczy?ska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Curr. Opin. Ophthalmol.

W. Nolan, “Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography,” Curr. Opin. Ophthalmol. 19(2), 115–121 (2008).
[CrossRef] [PubMed]

J. S. Wolffsohn and L. N. Davies, “Advances in anterior segment imaging,” Curr. Opin. Ophthalmol. 18(1), 32–38 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997).
[PubMed]

J. Biomed. Opt.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996).
[CrossRef]

J. Cataract Refract. Surg.

G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004).
[CrossRef] [PubMed]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vis.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

T. Kirschkamp, M. Dunne, and J. C. Barry, “Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes,” Ophthalmic Physiol. Opt. 24(2), 65–73 (2004).
[CrossRef] [PubMed]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[CrossRef] [PubMed]

Ophthalmol. Clin. North Am.

H. Ishikawa and J. S. Schuman, “Anterior segment imaging: ultrasound biomicroscopy,” Ophthalmol. Clin. North Am. 17(1), 7–20 (2004).
[CrossRef] [PubMed]

Ophthalmology

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Opt. Commun.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczy?ska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

P. Targowski, I. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, “Improved complex spectral domain OCT for in vivo eye imaging,” Opt. Commun. 249(1-3), 357–362 (2005).
[CrossRef]

Opt. Express

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometrical and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397–403 (2002).
[PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[CrossRef] [PubMed]

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16(4), 2405–2414 (2008).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

Optica Applicata

J. J. Kaluzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by Spectra Optical Coherence Tomography,” Optica Applicata 32, 581–589 (2002).

Optom. Vis. Sci.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci. 80(5), 383–394 (2003).
[CrossRef] [PubMed]

Proc. SPIE

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

J. Holmes, “Theory and applications of multi-beam OCT,” Proc. SPIE 7139, 713908 (2008).
[CrossRef]

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE 7168, 71681N (2009).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

E. Gotzinger, M. Pircher, R. A. Leitgeb, B. Baumann, and C. K. Hitzenberger, “Quadruple depth range spectral domain optical coherence tomography for imaging of the anterior eye segment,” presented at the SPIE Photonics West on Bios, San Jose, CA, USA, 24–29 Jan. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the dual channel OCT experimental system. The inserted is the enlargement of the dual focus configuration of two sample beams.

Fig. 2
Fig. 2

The simultaneously acquired raw images using the dual channel dual focus OCT show the anterior chamber (a) and the posterior surface of the lens (b), respectively. These two images have a distance of 3.325mm in air in the depth direction. Pixels: 2048 × 2048; Imaging range: 5.2 (depth) × 12 (width) mm (a) and 2.5 (depth) × 12 (width) mm (b); White bar: 0.5mm.

Fig. 3
Fig. 3

The simultaneously acquired images were constructed in scale, but with optical correction. All the surfaces of the anterior segment of the eye including the cornea, anterior chamber, anterior and posterior surfaces of crystalline lens and capsule were clearly visualized. The white bar: 0.5mm.

Fig. 4
Fig. 4

The right eye (−3.50D myopic) of the subject was imaged without accommodation (a) and with 5.5 D accommodation (b). The white bar: 0.5mm.

Tables (1)

Tables Icon

Table 1 Dimensions of the anterior segment in relaxed and accommodated eye. The accommodation amplitude is 2.00D in test session 1 and 5.50D in test session 2, respectively.

Metrics