Abstract

Transient stimulated Raman scattering is investigated in methane-filled hollow-core photonic crystal fiber. Using frequency-chirped ps-pulses at 1.06 μm as pump and tunable CW-radiation as Stokes seed, the vibrational excitation of the CH4 molecules can be controlled on the sub T 2 time-scale. In this way the generated Stokes pulse can be phase-locked to the pump pulse and its spectrum manipulated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37–52 (1988).
    [Crossref]
  2. P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
    [Crossref]
  3. I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).
  4. V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
    [Crossref]
  5. A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
    [Crossref]
  6. A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
    [Crossref]
  7. C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
    [Crossref]
  8. A. V. Konyashenko, L. L. Losev, and S. Yu. Tenyakov, “Raman frequency shifter for laser pulses shorter than 100 fs,” Opt. Express 15, 11855–11859 (2007).
    [Crossref]
  9. P. St.J. Russell, “Photonic-crystal fibers,” J. Lightw. Technol., 24, 4729–4749 (2006).
    [Crossref]
  10. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  11. F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
    [Crossref] [PubMed]
  12. G. Herzberg, “Molecular spectra and molecular structure,” in Infrared and Raman Spectra of Polyatomic Molecules, vol II. (Krieger publ., Florida, 1991).

2007 (2)

A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
[Crossref]

A. V. Konyashenko, L. L. Losev, and S. Yu. Tenyakov, “Raman frequency shifter for laser pulses shorter than 100 fs,” Opt. Express 15, 11855–11859 (2007).
[Crossref]

2006 (1)

P. St.J. Russell, “Photonic-crystal fibers,” J. Lightw. Technol., 24, 4729–4749 (2006).
[Crossref]

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

2002 (1)

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

1999 (2)

I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).

A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
[Crossref]

1998 (1)

V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
[Crossref]

1994 (1)

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

1988 (1)

1983 (1)

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[Crossref]

Antonopoulos, G.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Benabid, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

Burzo, A. M.

A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
[Crossref]

Canto-Said, E. J.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

Chugreev, A. V.

A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
[Crossref]

Couny, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

Duncan, M. D.

Herzberg, G.

G. Herzberg, “Molecular spectra and molecular structure,” in Infrared and Raman Spectra of Polyatomic Molecules, vol II. (Krieger publ., Florida, 1991).

Jordan, C.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Konyashenko, A. V.

Koprinkov, I. G.

I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).

Korn, G.

A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
[Crossref]

Krylov, V.

V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
[Crossref]

Losev, L. L.

Mahon, R.

Marowsky, G.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

May, P. G.

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[Crossref]

Midorikawa, K.

I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).

Nazarkin, A.

A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
[Crossref]

Ollikainen, O.

V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
[Crossref]

Reintjes, J.

Russell, P. St.J.

P. St.J. Russell, “Photonic-crystal fibers,” J. Lightw. Technol., 24, 4729–4749 (2006).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Sibbett, W.

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[Crossref]

Sokolov, A.V.

A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
[Crossref]

Stankov, K. A.

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

Suda, A.

I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).

Tankersley, L. L.

Tenyakov, S. Yu.

Wild, U. P.

V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
[Crossref]

Wittmann, M.

A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
[Crossref]

Appl. Phys. B (1)

C. Jordan, K. A. Stankov, G. Marowsky, and E. J. Canto-Said, “Efficient compression of femtosecond pulses by stimulated Raman scattering,” Appl. Phys. B 59, 471–473 (1994).
[Crossref]

Appl. Phys. Lett. (1)

P. G. May and W. Sibbett, “Transient stimulated Raman scattering of femtosecond laser pulses,” Appl. Phys. Lett. 43, 624–626 (1983).
[Crossref]

J. Lightw. Technol., (1)

P. St.J. Russell, “Photonic-crystal fibers,” J. Lightw. Technol., 24, 4729–4749 (2006).
[Crossref]

J. Opt. Soc. Am B (1)

V. Krylov, O. Ollikainen, and U. P. Wild et al., “Femtosecond stimulated Raman scattering in gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am B 15, 2910–2916 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. B (1)

I. G. Koprinkov, A. Suda, and K. Midorikawa, “Interference between stimulated Raman scattering and self-phase modulation in highly transient femtosecond pump regime,” J. Opt. Soc. B 16, 267–269 (1999).

Opt. Express (1)

Phys. Rev. A (1)

A. M. Burzo, A. V. Chugreev, and A.V. Sokolov “Stimulated rotational Raman generation controlled by strongly driven vibrational coherence in molecular deuterium”, Phys. Rev. A 75, 022515 (2007).
[Crossref]

Phys. Rev. Lett. (2)

A. Nazarkin, G. Korn, and M. Wittmann et al., “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium”; Phys. Rev. Lett. 83, 2560 (1999); “Group-velocity-matched interactions in hollow waveguides”, Phys. Rev. A 65, R041802 (2002).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St.J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated Raman scattering,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

Science (1)

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Other (1)

G. Herzberg, “Molecular spectra and molecular structure,” in Infrared and Raman Spectra of Polyatomic Molecules, vol II. (Krieger publ., Florida, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the temporal evolution of the interaction between a frequency chirped pump pulse, a CW-seed laser and a Raman transition. The instantaneous frequency of the pump pulse ω p(t) increases from the leading to the trailing edge of the pulse. At time t * the frequency difference ω p(t *) - ω seed matches the Raman frequency Ω, leading to population transfer to the upper vibrational level of the molecules. Scattering of the pump at times t > t * by the excited Raman coherence ρ12(t) produces a replica of the pump spectrum in the Stokes signal.

Fig. 2.
Fig. 2.

HC-PCF based chirped-pulse Raman shifter. 1: HC-PCF filled with CH4; 2: ps laser generating frequency chirped pump pulses; 3: CW-seed laser; 4: grating compressor; 5: optical spectrum analyzer (OSA)

Fig. 3.
Fig. 3.

(a) Stokes spectra generated in a HC-PCF filled with CH4 by a positively chirped 40 ps pump pulse at different CW seed frequencies (1: 6477 cm-1, 2: 6483 cm-1, 3: 6494 cm-1, 4: 6500 cm-1); (b) spectrum of the input pump pulse.

Fig. 4.
Fig. 4.

(a) Stokes spectra generated in a HC-PCF filled with CH4 by a negatively chirped 40 ps pump pulse at different CW seed frequencies; (b) Stokes spectra generated by the same pump pulse after its chirp was completely compensated (duration of the compressed pump pulse was 1.5 ps).

Fig. 5.
Fig. 5.

Calculated Stokes spectra produced by SRS in CH4 for a linearly chirped pulse at different seed frequencies; (a) pump duration τ p = 40 ps, T 2 = 48 ps ; (b) pump duration τ p = 200 ps, T 2 = 48 ps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ12t=1T2ρ12+ir12ħEpEs*n,nt=r12ħIm{EpEs*ρ12*}nn0T1
Epz+1vpEpt=i2πNr12ωp2βpc2 ρ12 Es
Esz+1vsEst=i2πNr12ωs2βsc2 ρ12* Ep .
Ep(z,τ)Ep0(τ)exp(τ2/2),Es(z,τ)Es0(τ)exp(iΔωτ)
ρ12(τ)=ir12ħτEp(τ)Es*(τ)=r12(1+i)ħ(πα)1/2ei(Δα)2/2αEp0Es0Φ(τ)
θ=12(1+i) α1/2 (ττ*)
E˜s(z,τ)=i2πNr12ωs2zc2ksρ̄12*U(ττ*)Ep0(τ)

Metrics