Abstract

We have theoretically investigated the propagation properties of two kinds of selectively liquid-filled PCFs. For internally liquid-filled PCFs, the outer air-hole layers function as the second cladding to reduce the penetration of the light field while the inner liquid-hole layers can still induce the tunable PBG effect. The complementary structures, externally liquid-filled PCFs, can be used in long-period fiber gratings to decrease the utilization of the lossy liquids and remain single-mode operation for the existence of the inner air-hole layers. The confinement losses of both selectively liquid-filled PCFs are shown to be efficiently reduced due to the outer or inner air-hole layers, which is quite useful for further applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  2. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref] [PubMed]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  4. T. A, Birks, J. C. Knight, and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  5. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
    [Crossref]
  6. L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
    [Crossref]
  7. C. P. Yu and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron. 36, 145–163 (2004).
    [Crossref]
  8. T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
    [Crossref]
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-676
    [Crossref] [PubMed]
  10. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-20-1395
    [Crossref]
  11. S. Coen, A. H. Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-753
    [Crossref]
  12. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
    [Crossref]
  13. K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14, 6870–6878 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6870
    [Crossref] [PubMed]
  14. C. P. Yu, J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4443
    [Crossref] [PubMed]
  15. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
    [Crossref]
  16. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [Crossref]
  17. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901
    [Crossref] [PubMed]
  18. D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-9-986
    [Crossref] [PubMed]
  19. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800
    [Crossref] [PubMed]
  20. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
    [Crossref]
  21. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974–1976 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974
    [Crossref] [PubMed]
  22. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-316
    [Crossref] [PubMed]
  23. C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165
    [Crossref] [PubMed]
  24. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13, 9014–9022 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
    [Crossref] [PubMed]
  25. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-18-2672
    [Crossref] [PubMed]
  26. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853
    [PubMed]

2008 (2)

2007 (2)

2006 (3)

2005 (1)

2004 (6)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[Crossref]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974–1976 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974
[Crossref] [PubMed]

C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165
[Crossref] [PubMed]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

C. P. Yu and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron. 36, 145–163 (2004).
[Crossref]

2003 (4)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
[Crossref]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

2002 (2)

2001 (2)

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-676
[Crossref] [PubMed]

1999 (2)

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-20-1395
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (1)

Alkeskjold, T. T.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Atkin, D. M.

Bassi, P.

Bennett, P. J.

Bétourné, A.

Bigot, L.

Birks, T. A,

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

Birks,, T. A.

Bjarklev, A.

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974–1976 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974
[Crossref] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Borelli, E.

Bouwmans, G.

Broderick, N. G. R.

Broeng, J.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Brown, T.

Carlsen, A.

Chang, H. C.

Chen, G. X.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

Coen, S.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Demokan, M.

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

Douay, M.

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Eggleton, B. J.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[Crossref]

Folkenberg, J. R.

Fujita, M.

Giessen, H.

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

Gundu, K. M.

Hansen, T. P.

Harvey, J. D.

Hermann, D.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

Ho, H.

Hoiby, P. E.

Hoo, Y.

Huang, S. S.

Huang, W. P.

L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
[Crossref]

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

Jensen, J. B.

Jensen, J. R.

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Jian, S. S.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
[Crossref]

Jin, W.

Kawanishi, S.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Kolesik, M.

Kubota, H.

Lægsgaard, J.

Lai, K.

Larsen, T.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

Lee, K. S.

Leonhardt, R.

Leon-Saval, S. G.

Li, J.

Libori, E. B.

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Liou, J. H.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

Lun Chau, A. H.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Moloney, J. V.

Monro, T. M.

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Perrin, M.

Pureur, V.

Quiquempois, Y.

Richardson, D. J.

Riishede, J.

Rindorf, L.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russel, P. St.

Russell, P. St. J.

Scolari, L.

Shen, L. P.

L. P. Shen, W. P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
[Crossref]

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

Simonsen, H.

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

Suzuki, K.

Tanaka, M.

Tartarini, G.

Teipel, J.

Wadsworth, W. J.

Witkowska, A.

Wu, S. T.

Xiao, L.

Yu, C. P.

Zhang, R.

Zhao, C.

Zhu, Z.

Appl. Phys. Lett. (2)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic bandgap device,” Appl. Phys. Lett. 84, 1838–1840 (2004).
[Crossref]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540–542 (2003).
[Crossref]

T. P. Hansen, J. Broeng, E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[Crossref]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (10)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-676
[Crossref] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800
[Crossref] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901
[Crossref] [PubMed]

K. M. Gundu, M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express 14, 6870–6878 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6870
[Crossref] [PubMed]

C. P. Yu, J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4443
[Crossref] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 258–2596 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589
[Crossref]

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853
[PubMed]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-316
[Crossref] [PubMed]

C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165
[Crossref] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13, 9014–9022 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9014
[Crossref] [PubMed]

Opt. Lett. (6)

A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett. 31, 2672–2674 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-18-2672
[Crossref] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974–1976 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974
[Crossref] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-9-986
[Crossref] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-20-1395
[Crossref]

J. C. Knight, T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

T. A, Birks, J. C. Knight, and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

C. P. Yu and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron. 36, 145–163 (2004).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Internally liquid-filled PCFs with 1, 3, and 5 air-hole layers lying outside the inner liquid-hole layers. (b). Externally liquid-filled PCFs with 1, 3, and 5 liquid-hole layers lying outside the inner air-hole layers.

Fig. 2.
Fig. 2.

(a). Effective indices and (b) losses versus the wavelength for variant internally liquid-filled PCFs.

Fig. 3.
Fig. 3.

Contours of the field distributions for the fundamental guided modes on the (a) original liquid-filled PCF with six liquid-hole layers, (b) internally liquid-filled PCF with two outer airhole layers, and (c) liquid-filled PCF with only four liquid-hole layers, respectively, as λ = 1.5 μm.

Fig. 4.
Fig. 4.

(a). Effective indices and (b) losses versus the wavelength for variant externally liquid-filled PCFs.

Metrics