Abstract

We discuss surface enhanced Raman spectroscopy (SERS) structures aimed at providing robust and reproducible enhancements. The structures involve periodic arrays of gold nanospheres near silver film structures that may also be patterned. They enable one to excite Bloch wave surface plasmon polaritons (SPPs) that can also couple to local surface plasmons (LSPs) of the nanospheres, leading to the possibility of multiplicative enhancements. If the magnitude of the average electric field, ∣E∣, between the particles is enhanced by g such that ∣E∣ = gE 0∣, ∣E 0∣ being the incident field, realistic finite-difference time-domain simulations show that under favorable circumstances g ≈ 0.6 g SPP g LSP, where g SPP and g LSP are enhancement factors associated with the individual components. SERS enhancements for the structures can be as high as O(g 4) = 108.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
    [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).
  3. M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
    [CrossRef] [PubMed]
  4. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404 - 3406 (2005).
    [CrossRef]
  5. H. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 - 5666 (1998).
    [CrossRef]
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Boston, 2005).
  7. T. W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652 - 9659 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9652
    [CrossRef] [PubMed]
  8. D. Lynch and W. R. Hunter, Handbook of Optical Constants, E. D. Palik, ed. (Academic Press, New York, 1985).
  9. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
    [CrossRef]
  10. S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150 - 3165 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3150.
    [CrossRef] [PubMed]
  11. E. C. Le Ru, P. G. Etchegoin, and M. Meyer, "Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection," J. Chem. Phys 125, 204701-1 - 204701-13 (2006)

2008 (2)

J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
[CrossRef] [PubMed]

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

2005 (3)

1998 (2)

H. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 - 5666 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Badenes, G.

Banholzer, M. J.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

Cesario, J.

Chang, S.-H.

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Enoch, S.

Etchegoin, P. G.

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, "Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection," J. Chem. Phys 125, 204701-1 - 204701-13 (2006)

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Gray, S. K.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Hall, D. G.

H. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 - 5666 (1998).
[CrossRef]

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
[CrossRef] [PubMed]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
[CrossRef] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, "Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection," J. Chem. Phys 125, 204701-1 - 204701-13 (2006)

Lee, T. W.

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Meyer, M.

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, "Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection," J. Chem. Phys 125, 204701-1 - 204701-13 (2006)

Millstone, J. E.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

Mirkin, C. A.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

Qin, L.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

Quidant, R.

Schatz, G. C.

Stuart, H.

H. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 - 5666 (1998).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Chem. Soc. Rev. (2)

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chem. Soc. Rev. 37,885 - 897 (2008).
[CrossRef] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, "SERS: a single-molecule and nanoscale tool for bioanalytics," Chem. Soc. Rev. 37, 1052 - 160 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 - 6782 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

H. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 - 5666 (1998).
[CrossRef]

Other (4)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Boston, 2005).

D. Lynch and W. R. Hunter, Handbook of Optical Constants, E. D. Palik, ed. (Academic Press, New York, 1985).

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, "Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection," J. Chem. Phys 125, 204701-1 - 204701-13 (2006)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Proposed SERS substrates (a) Structure I (b) Structure II. See text for details.

Fig. 2.
Fig. 2.

(a) Reflection spectra for structure I without (red linepoints) and with (blue) particles present calculated via FDTD. Steady state electric field intensities at λ0 = 633 nm for the unit cell corresponding to Fig. 1(a) (b) without particles, (c) with particles, and (d) with particles and PMLs. See text for discussion.

Fig. 3.
Fig. 3.

(a) Reflection spectra for structure II with d = 0 nm (red linespoints) and d = 40 nm (blue). Inset corresponds to structure II with PMLs. Steady state electric field intensities (b) for the m = 1 BW-SPP with no particles present, (c) d = 40 nm with particles present, and (d) d = 0 with particles present. (All intensities > 30 ∣E0 2 are saturated in yellow)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ0Pm(εAg(λ0)εdielectricεAg(λ0)+εdielectric)1/2 .

Metrics