Abstract

In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60° waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).
  3. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
    [CrossRef]
  4. W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
    [CrossRef]
  5. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
    [CrossRef] [PubMed]
  6. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, “Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides,” Opt. Express 14, 5617–5633 (2006).
    [CrossRef] [PubMed]
  7. Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
    [CrossRef]
  8. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
    [CrossRef]
  9. P. K. Wei and W. S. Wang, “A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994).
    [CrossRef]
  10. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
    [CrossRef]
  11. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
    [CrossRef]
  12. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
    [CrossRef] [PubMed]
  13. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
    [CrossRef] [PubMed]
  14. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  15. A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]
  16. S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
    [CrossRef]
  17. B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
    [CrossRef]
  18. P. I. Borel, A. Harpøth, L. H. Frandsen, and M. Kristensen, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004).
    [CrossRef] [PubMed]
  19. N. Moll and G.-L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
    [CrossRef]
  20. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
    [CrossRef]
  21. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [CrossRef]
  22. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
    [CrossRef]
  23. P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, and M. Kristensen, Opt. Express 11, 1757 (2003).
    [CrossRef] [PubMed]
  24. G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
    [CrossRef]
  25. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
    [CrossRef]

2008 (2)

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

2007 (3)

2006 (3)

2005 (1)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

2004 (3)

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

N. Moll and G.-L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[CrossRef]

P. I. Borel, A. Harpøth, L. H. Frandsen, and M. Kristensen, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004).
[CrossRef] [PubMed]

2003 (2)

P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, and M. Kristensen, Opt. Express 11, 1757 (2003).
[CrossRef] [PubMed]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

2002 (2)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

2001 (3)

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

1999 (1)

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1994 (2)

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

P. K. Wei and W. S. Wang, “A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Adibi, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Asakawa, K.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Baba, T.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Benisty, H.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
[CrossRef]

Bona, G.-L.

N. Moll and G.-L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[CrossRef]

Borel, P. I.

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Cai, X. H.

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Cassagne, D.

Chen, C.

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chen, L. H.

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Chen, L.H.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

De La Rue, R. M.

De La Rue, Richard M.

de Vreede, A. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Du, X.Y.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Dunbar, L. A.

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

Fan, S.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Frandsen, L. H.

Groen, F. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Harpøth, A.

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Houdré, R.

Ikeda, N.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

Jouanin, C.

Karlsson, A.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Kim, S.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Kitagawa, Y.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Kristensen, M.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Labilloy, D.

Le Thomas, N.

Lee, E. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Lee, R. K.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

Ma, X. T.

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

Mastroiacovo, S.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Metaal, E. G.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Miao, B.

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Mizutani, A.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Moll, N.

N. Moll and G.-L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[CrossRef]

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

Murakowski, J.

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Nozaki, K.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

O, B. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

O’Faolain, L.

Oesterle, U.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
[CrossRef]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Olivier, S.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Ozaki, N.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Park, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Park, W.

Pottier, P.

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

Prather, D. W.

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Qiang, Z.

Qiu, M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

Rattier, M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
[CrossRef]

Ren, G.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Scherer, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Schonbrun, E.

Shi, S.

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

Smit, M. K.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Smith, C. J. M.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
[CrossRef]

Soldano, L. B.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Soref, R. A.

Sugimoto, Y.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Summers, C. J.

Takata, Y.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Thorhauge, M.

Verbeek, B. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Wang, K.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Wang, W. S.

P. K. Wei and W. S. Wang, “A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994).
[CrossRef]

Watanabe, H.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

Watanabe, Y.

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

Wei, P. K.

P. K. Wei and W. S. Wang, “A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994).
[CrossRef]

Weisbuch, C.

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

Woo, D.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Wu, Q.

Xing, M.X.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Xu, Y.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamashita, T.

Yariv, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Zabelin, V.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

Zhang, Y.J.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Zheng, W. H.

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

Zheng, W.H.

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

Zhou, W.

Zhuang, Y. X.

Appl. Phys. Lett. (4)

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92, 021108 (2008).
[CrossRef]

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, and U. Oesterle, “Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal,” Appl. Phys. Lett. 79, 2514–2516 (2001).
[CrossRef]

N. Moll and G.-L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (1)

G. Ren, W.H. Zheng, Y.J. Zhang, K. Wang, X.Y. Du, M.X. Xing, and L.H. Chen, “Mode Analysis and Design of a Low-Loss Photonic Crystal 60 Waveguide Bend,” IEEE J. Lightwave Technol. 26, 2215–2218 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

IEEE Photon Techol. Lett. (1)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a Compact Photonic-Crystal-Based Polarizing Beam Splitter,” IEEE Photon Techol. Lett. 17, 1435–1437 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-Efficiency Broad-Band Transmission Through a Double-60°Bend in a Planar Photonic Crystal Single-Line Defect Waveguide,” IEEE Photon. Technol. Lett. 16, 2469–2471 (2004).
[CrossRef]

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder Interferometer Polarization Splitter in InGaAsP/LnP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994).
[CrossRef]

P. K. Wei and W. S. Wang, “A TE-TM Mode Splitter on Lithium Niobate Using Ti, Ni, and MgO Diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994).
[CrossRef]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003).
[CrossRef]

J. Appl. Phys. (1)

Y. Watanabe, N. Ikeda, Y. Sugimoto, Y. Takata, Y. Kitagawa, A. Mizutani, N. Ozaki, and K. Asakawa, “Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs,” J. Appl. Phys. 101, 113108 (2007).
[CrossRef]

J. Crystal Growth (1)

W. H. Zheng, G. Ren, X. T. Ma, X. H. Cai, L. H. Chen, K. Nozaki, and T. Baba, “Dipole mode photonic crystal point defect laser on InGaAsP/InP,” J. Crystal Growth 292, 341–344 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Phys. Rev. B. (1)

M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B. 64, 075313 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic view of the PC-PBS. The length of the coupler is 61a. The period of the triangular lattice is a=450 nm, and the radius of the air holes is r=0.36a. The refractive index is 3.32. The air holes separating the two waveguides have smaller radii of r1=0.28a.

Fig. 2.
Fig. 2.

The photonic band structures of the PC-PBS for (a) TE light and (b) TM light. In Fig. 2(a), the decoupling frequency is indicated by the horizontal dotted line. There is a high order odd supermode at the decoupling frequency. The Magnetic field distributions of the two modes are shown in the inset and indicated by arrows.

Fig. 3.
Fig. 3.

The transmission spectrum of the PC-PBS for (a) TE light and (b) TM light.

Fig. 4.
Fig. 4.

Schematic view of the proposed low-loss 60° waveguide bend structure.

Fig. 5.
Fig. 5.

The photonic band structures of (a) the straight waveguide and (b) the waveguide bend. The red lines indicate the high-transmission frequency region. The supercell and the mode pattern are also shown as the inset.

Fig. 6.
Fig. 6.

The transmission spectrum of the proposed waveguide bend calculated by 2D-FDTD method.

Fig. 7.
Fig. 7.

Schematic view of the integration of the multi-mode PC-PBS and the waveguide bend. The length of the PC-PBS is 61a.

Fig. 8.
Fig. 8.

Transmission spectrum of the integrated circuit with the multi-mode PBS.

Fig. 9.
Fig. 9.

Schematic view of the integration of the single-mode PC-PBS and the waveguide bend. The length of the PC-PBS is 56a.

Fig. 10.
Fig. 10.

Photonic band structure of the proposed single-mode PC-PBS for TE light.

Fig. 11.
Fig. 11.

Transmission spectrum of the integrated circuit with the single-mode PBS.

Fig. 12.
Fig. 12.

The poynting vector distributions of the integrated circuit at decoupled wavelength for (a) TE light with multi-mode PC-PBS (b) TE light with single-mode PC-PBS and (c) TM light with single-mode PC-PBS.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LB=2πkevenkodd

Metrics