Abstract

We present an experimental demonstration of simultaneous chromatic dispersion and self-phase modulation compensation at 10.7 Gb/s using real-time electronic digital signal processing. This was achieved using a pre-distorting transmitter based on commercially available field programmable gate arrays and 21.4 GS/s, 6-bit resolution digital-to-analog converters. The digital signal processing employed look-up tables stored in RAM. This resulted in the achievement of a BER of 10−6 at an OSNR of 16 dB after transmission over a 450 km link of uncompensated standard single mode fiber with + 4dBm launch power.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightwave Technol. 26(1), 158–167 (2008).
    [CrossRef]
  2. J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical Domain Compensation of Optical Dispersion,” in Proceedings of Optical Fiber Communication Conference (2005), paper OThJ3.
  3. K. Roberts, “Electronic dispersion compensation beyond 10Gb/s,” in Proceedings of IEEE LEOS Summer Topical Meetings (Portland Oregon, USA, 2007), paper MA2.3.
  4. P. M. Watts, R. Waegemans, Y. Benlachtar, V. Mikhailov, P. Bayvel, and R. I. Killey, “10.7 Gb/s transmission over 1200 km of standard single-mode fiber by electronic predistortion using FPGA-based real-time digital signal processing,” Opt. Express 16(16), 12171–12180 (2008).
    [CrossRef] [PubMed]
  5. A. Färbert, “Application of digital equalization in optical transmission systems,” in Proceedings of Optical Fiber Communications Conference (2006), paper OTuE5.
  6. K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
    [CrossRef]
  7. G. Charlet, et al., “ Transmission of 40Gb/s QPSK with Coherent Detection over Ultra-Long Distance Improved by Nonlinearity Mitigation,” in Proceedings of European Conference on Optical Communication (2006), paper Th4.3.4.
  8. K. Kikuchi, M. Fukase, and Sang-Yuep Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” in Proceedings of Optical Fiber Communications Conference, (2007), paper OTuA2.
  9. R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
    [CrossRef]
  10. R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion,” in Proceedings of Optical Fiber Communication Conference, (2006), paper OWB3.
  11. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  12. E. Ip, P. T. L. Alan, D. J. F. Barros, and J. M. Kahn, “Compensation of Dispersion and Nonlinearity in WDM Transmission using Simplified Digital Backpropagation,” Digest of the IEEE LEOS Summer Topical Meetings, 2008: p. 123–124 254.
  13. Celtic 100GET Project, “100 Gbit/s Carrier-Grade Ethernet Transport Technologies,” retrieved 2009, http://www.celtic-initiative.org/Projects/100GET .
  14. M. I. C. R. A. M. Microelectronics Gmbh Germany, “VEGA Signal Convertors,” retrieved 2009, http://www.micram.com/index.php/products/vega .
  15. R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic precompensation techniques to combat dispersion and nonlinearities in optical transmission,” in Proceedings of European Conference on Optical Communication, (2005), paper Tu4.2.1.
  16. P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
    [CrossRef]

2008

2006

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

2005

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Adamiecki, A.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Bayvel, P.

P. M. Watts, R. Waegemans, Y. Benlachtar, V. Mikhailov, P. Bayvel, and R. I. Killey, “10.7 Gb/s transmission over 1200 km of standard single-mode fiber by electronic predistortion using FPGA-based real-time digital signal processing,” Opt. Express 16(16), 12171–12180 (2008).
[CrossRef] [PubMed]

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Benlachtar, Y.

Buchali, F.

Bülow, H.

Chen, X.

Fidler, F.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Glick, M.

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Goldfarb, G.

Hardcastle, I.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Killey, R. I.

P. M. Watts, R. Waegemans, Y. Benlachtar, V. Mikhailov, P. Bayvel, and R. I. Killey, “10.7 Gb/s transmission over 1200 km of standard single-mode fiber by electronic predistortion using FPGA-based real-time digital signal processing,” Opt. Express 16(16), 12171–12180 (2008).
[CrossRef] [PubMed]

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Kim, I.

Klekamp, A.

Li, C. D.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Li, G.

Li, X.

Mateo, E.

Mikhailov, V.

P. M. Watts, R. Waegemans, Y. Benlachtar, V. Mikhailov, P. Bayvel, and R. I. Killey, “10.7 Gb/s transmission over 1200 km of standard single-mode fiber by electronic predistortion using FPGA-based real-time digital signal processing,” Opt. Express 16(16), 12171–12180 (2008).
[CrossRef] [PubMed]

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

O'Sullivan, M.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Reddy, P. K.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Roberts, K.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Song, H.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Strawczynski, L.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Waegemans, R.

Watts, P. A.

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

Watts, P. M.

Winzer, P. J.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Woodworth, C.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

Yaman, F.

Electron. Lett.

P. J. Winzer, C. Woodworth, F. Fidler, P. K. Reddy, H. Song, and A. Adamiecki, “Temporal alignment of high-speed transmit channels of FPGA,” Electron. Lett. 44(2), 113–115 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Roberts, C. D. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

R. I. Killey, P. A. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

E. Ip, P. T. L. Alan, D. J. F. Barros, and J. M. Kahn, “Compensation of Dispersion and Nonlinearity in WDM Transmission using Simplified Digital Backpropagation,” Digest of the IEEE LEOS Summer Topical Meetings, 2008: p. 123–124 254.

Celtic 100GET Project, “100 Gbit/s Carrier-Grade Ethernet Transport Technologies,” retrieved 2009, http://www.celtic-initiative.org/Projects/100GET .

M. I. C. R. A. M. Microelectronics Gmbh Germany, “VEGA Signal Convertors,” retrieved 2009, http://www.micram.com/index.php/products/vega .

R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic precompensation techniques to combat dispersion and nonlinearities in optical transmission,” in Proceedings of European Conference on Optical Communication, (2005), paper Tu4.2.1.

A. Färbert, “Application of digital equalization in optical transmission systems,” in Proceedings of Optical Fiber Communications Conference (2006), paper OTuE5.

J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical Domain Compensation of Optical Dispersion,” in Proceedings of Optical Fiber Communication Conference (2005), paper OThJ3.

K. Roberts, “Electronic dispersion compensation beyond 10Gb/s,” in Proceedings of IEEE LEOS Summer Topical Meetings (Portland Oregon, USA, 2007), paper MA2.3.

R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion,” in Proceedings of Optical Fiber Communication Conference, (2006), paper OWB3.

G. Charlet, et al., “ Transmission of 40Gb/s QPSK with Coherent Detection over Ultra-Long Distance Improved by Nonlinearity Mitigation,” in Proceedings of European Conference on Optical Communication (2006), paper Th4.3.4.

K. Kikuchi, M. Fukase, and Sang-Yuep Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” in Proceedings of Optical Fiber Communications Conference, (2007), paper OTuA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Electronic predistortion transmitter

Fig. 2
Fig. 2

Schematic of DSP architecture [9]

Fig. 3
Fig. 3

Schematic representation of the setup (Gray blocks are used for synchronization processes). DS – dual stage, SS – single stage, t – oscilloscope, f – spectrum analyzer.

Fig. 4
Fig. 4

Block diagram of the internal working of FPGA in combination with DAC for a single arm. Gray blocks are used for synchronization processes. Block A represents 63x the LUT block for the parallel processed bits of the pattern, blocks B, C, D, E represent parallel processed data for the 23 other IO ports.

Fig. 5
Fig. 5

Transmission result without significant NL effects at 0 dBm launch power, showing (a) the achieved BER versus OSNR for an 11 bit LUT and (b) the requred OSNR versus lengths to achieve a BER of 10−6 for LUTs with different address sizes (7 and 11 bits).

Fig. 9
Fig. 9

Transmission results showing compensation of nonlinear effects.

Fig. 6
Fig. 6

Eye diagrams with OSNR of 18 dB at the receiver of (a) an uncompensated NRZ signal after 100 km tranmission,compared to EPD NRZ after (b) 100 km, (c) 452 km and (d) 737 km tranmission.

Fig. 7
Fig. 7

Influence of non optimal settings at the transmitter on the BER (a)Variation of biases and quadrature (π/2) control, (b) misalignment in time between both arms

Fig. 8
Fig. 8

Effect of non-optimal PkPk levels of the signal driving the MZ arms.

Metrics