Abstract

A novel technique has been developed to obtain simultaneous tomographic images of temperature and species concentration based on hyperspectral absorption spectroscopy. The hyperspectral information enables several key advantages when compared to traditional tomography techniques based on limited spectral information. These advantages include a significant reduction in the number of required projection measurements, and an enhanced insensitivity to measurements/inversion uncertainties. These advantages greatly facilitate the practical implementation and application of the tomography technique. This paper reports the development of the technique, and the experimental demonstration of a prototype sensor in a near-adiabatic, atmospheric-pressure laboratory Hencken burner. The spatial and temporal resolution enabled by this new sensing technique is expected to resolve several key issues in practical combustion devices.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Emission tomography of flame radicals

H. M. Hertz and G. W. Faris
Opt. Lett. 13(5) 351-353 (1988)

Frequency-resolved absorption tomography with tunable diode lasers

Reynaldo Villarreal and Philip L. Varghese
Appl. Opt. 44(31) 6786-6795 (2005)

References

  • View by:
  • |
  • |
  • |

  1. F. Mayinger and O. Feldmann, eds., Optical Measurements: Techniques and Applications (Springer, Berlin, 2001).
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, The Netherlands, 1996).
  3. M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds., (Taylor & Francis, New York, 2002), Chap. 18.
  4. M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption-measurements,” Combust. Sci. Technol.  60(1), 231–248 (1988).
    [Crossref]
  5. H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun.  54(3), 131–136 (1985).
    [Crossref]
  6. K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
    [Crossref]
  7. B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
    [Crossref]
  8. S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
    [Crossref]
  9. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
    [Crossref] [PubMed]
  10. P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.
  11. K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
    [Crossref]
  12. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
    [Crossref] [PubMed]
  13. W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
    [Crossref]
  14. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.  47(23), 4186–4192 (2008).
    [Crossref] [PubMed]
  15. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.  47(21), 3751–3759 (2008).
    [Crossref] [PubMed]
  16. M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt.  32(30), 6104–6116 (1993).
    [Crossref] [PubMed]
  17. A. Franchois and C. Pichot, “Microwave imaging - complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antenn. Propag.  45(2), 203–215 (1997).
    [Crossref]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).
  19. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
    [Crossref]
  20. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
    [Crossref] [PubMed]
  21. T. Kraetschmer and S. T. Sanders, “Ultrastable Fourier domain mode locking observed in a laser sweeping 1363.8 - 1367.3 nm,” in Conference on Lasers and Electro-Optics (CLEO), submitted (Baltimore, 2009).
  22. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
    [Crossref] [PubMed]
  23. R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
    [Crossref]
  24. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
    [Crossref]

2008 (5)

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
[Crossref] [PubMed]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
[Crossref]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.  47(23), 4186–4192 (2008).
[Crossref] [PubMed]

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.  47(21), 3751–3759 (2008).
[Crossref] [PubMed]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

2007 (2)

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
[Crossref] [PubMed]

2006 (1)

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

2005 (2)

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
[Crossref]

2004 (1)

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

2001 (1)

F. Mayinger and O. Feldmann, eds., Optical Measurements: Techniques and Applications (Springer, Berlin, 2001).

2000 (1)

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

1997 (1)

A. Franchois and C. Pichot, “Microwave imaging - complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antenn. Propag.  45(2), 203–215 (1997).
[Crossref]

1995 (1)

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
[Crossref]

1993 (1)

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt.  32(30), 6104–6116 (1993).
[Crossref] [PubMed]

1992 (1)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

1988 (1)

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption-measurements,” Combust. Sci. Technol.  60(1), 231–248 (1988).
[Crossref]

1987 (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

1985 (1)

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun.  54(3), 131–136 (1985).
[Crossref]

Allen, M. G.

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds., (Taylor & Francis, New York, 2002), Chap. 18.

An, X.

Arroyo, M. P.

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt.  32(30), 6104–6116 (1993).
[Crossref] [PubMed]

Barber, R. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

Cai, W.

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.  47(21), 3751–3759 (2008).
[Crossref] [PubMed]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.  47(23), 4186–4192 (2008).
[Crossref] [PubMed]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
[Crossref]

Carey, S. J.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

Caswell, A. W.

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

Chung, K. B.

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
[Crossref]

Clough, E.

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

Colbourne, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Colbourne, S. M.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Corana, A.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

Crossley, S. D.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Dagel, D.

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
[Crossref] [PubMed]

Davidson, J. L.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, The Netherlands, 1996).

Ewing, D. J.

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

Franchois, A.

A. Franchois and C. Pichot, “Microwave imaging - complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antenn. Propag.  45(2), 203–215 (1997).
[Crossref]

Fujimoto, J. G.

Furlong, E. R.

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds., (Taylor & Francis, New York, 2002), Chap. 18.

Garcia-Castillo, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Garcia-Stewart, C.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Garcia-Stewart, C. A.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Gillet, B.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

Gord, J. R.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

Gouldin, F. C.

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
[Crossref]

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption-measurements,” Combust. Sci. Technol.  60(1), 231–248 (1988).
[Crossref]

Hanson, R. K.

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt.  32(30), 6104–6116 (1993).
[Crossref] [PubMed]

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds., (Taylor & Francis, New York, 2002), Chap. 18.

Hardalupas, Y.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

Harris, G. J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

Herold, R. E.

Hertz, H. M.

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun.  54(3), 131–136 (1985).
[Crossref]

Hindle, F. P.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

Huber, R.

Hurr, W. J.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Kavounides, C.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

Kinnius, P. J.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

Kraetschmer, T.

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
[Crossref] [PubMed]

T. Kraetschmer and S. T. Sanders, “Ultrastable Fourier domain mode locking observed in a laser sweeping 1363.8 - 1367.3 nm,” in Conference on Lasers and Electro-Optics (CLEO), submitted (Baltimore, 2009).

Kranendonk, L. A.

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

Litt, T.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Litt, T. J.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Lucht, R. P.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

Ma, L.

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
[Crossref]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.  47(23), 4186–4192 (2008).
[Crossref] [PubMed]

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.  47(21), 3751–3759 (2008).
[Crossref] [PubMed]

Marchesi, M.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

Martini, C.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

McCann, H.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Mewes, D.

K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
[Crossref]

Murray, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Murray, S. C.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Okura, Y.

Ozanyan, K. B.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Pegrum, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Pegrum, S. H.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Pichot, C.

A. Franchois and C. Pichot, “Microwave imaging - complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antenn. Propag.  45(2), 203–215 (1997).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

Ravichandran, M.

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption-measurements,” Combust. Sci. Technol.  60(1), 231–248 (1988).
[Crossref]

Ridella, S.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

Roy, S.

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

Salem, K.

K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
[Crossref]

Sanders, S. T.

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
[Crossref] [PubMed]

T. Kraetschmer and S. T. Sanders, “Ultrastable Fourier domain mode locking observed in a laser sweeping 1363.8 - 1367.3 nm,” in Conference on Lasers and Electro-Optics (CLEO), submitted (Baltimore, 2009).

Taylor, A. M. K. P.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

Tennyson, J.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

Terzija, N.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

Tolchenov, R. N.

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

Tsotsas, E.

K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
[Crossref]

Turner, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Turner, P. J.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

Urata, Y.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

Winterbone, D. E.

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

Wolga, G. J.

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
[Crossref]

Wright, P.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

ACM Trans. Math. Softw (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM Trans. Math. Softw.  13(3), 262–280 (1987).
[Crossref]

Appl. Opt (6)

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt.  34(24), 5492–5500 (1995).
[Crossref]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.  47(23), 4186–4192 (2008).
[Crossref] [PubMed]

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.  47(21), 3751–3759 (2008).
[Crossref] [PubMed]

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt.  32(30), 6104–6116 (1993).
[Crossref] [PubMed]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.  44(31), 6578–6592 (2005).
[Crossref] [PubMed]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.  46(19), 4117–4124 (2007).
[Crossref] [PubMed]

Appl. Therm. Eng (1)

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID),” Appl. Therm. Eng.  24(11–12), 1633–1653 (2004).
[Crossref]

Chem. Eng. J. (1)

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77(1-2), 111–118 (2000).
[Crossref]

Chem. Eng. J. in press (1)

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. in press.

Chem. Eng. Sci (1)

K. Salem, E. Tsotsas, and D. Mewes, “Tomographic measurement of breakthrough in a packed bed adsorber,” Chem. Eng. Sci.  60(2), 517–522 (2005).
[Crossref]

Combust. Sci. Technol (1)

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption-measurements,” Combust. Sci. Technol.  60(1), 231–248 (1988).
[Crossref]

Comput. Phys. Commun (1)

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.  179(4), 250–255 (2008).
[Crossref]

IEEE Trans. Antenn. Propag (1)

A. Franchois and C. Pichot, “Microwave imaging - complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antenn. Propag.  45(2), 203–215 (1997).
[Crossref]

Mon. Not. R. Astron. Soc (1)

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc.  368(3), 1087–1094 (2006).
[Crossref]

Opt. Commun (2)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.  281(2), 319–325 (2008).
[Crossref]

H. M. Hertz, “Experimental-determination of 2-D flame temperature-fields by interferometric tomography,” Opt. Commun.  54(3), 131–136 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett (1)

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.  33(7), 738–740 (2008).
[Crossref] [PubMed]

Other (5)

F. Mayinger and O. Feldmann, eds., Optical Measurements: Techniques and Applications (Springer, Berlin, 2001).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, The Netherlands, 1996).

M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable diode laser sensing and combustion control,” in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, eds., (Taylor & Francis, New York, 2002), Chap. 18.

T. Kraetschmer and S. T. Sanders, “Ultrastable Fourier domain mode locking observed in a laser sweeping 1363.8 - 1367.3 nm,” in Conference on Lasers and Electro-Optics (CLEO), submitted (Baltimore, 2009).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, New York, USA, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The mathematical formulation of the hyperspectral tomography problem.

Fig. 2.
Fig. 2.

Schematic of the experimental setup and the hyperspectral laser source. Top panel: experimental arrangement and a seven -zone tomography scheme used to perform the tomographic reconstruction. The dimensions of the zones are not drawn to scale. Bottom panel: schematic of the FFP-TFL used to measure the flame spectra. The design is among the most basic possible for a swept-wavelength laser based on a fiber Fabry-Perot tunable filter.

Fig. 3.
Fig. 3.

Example spectra measured by the laser at beam location 6.

Fig. 4.
Fig. 4.

T and X obtained from line-of-sight analysis using the measured spectra at each beam location. The adiabatic flame temperature and concentration obtained from equilibrium calculations are: T = 2379 K and X = 0.347 at Φ = 1.0; T = 1647 K and X = 0.190 at Φ = 0.5. The flame temperatures measured by CARS are: T = 2400 K at Φ = 1.0; T = 1625 K at Φ = 0.5.

Fig. 6.
Fig. 6.

Comparison of the fitting residuals between line-of-sight-averaged and tomography analysis.

Fig. 5.
Fig. 5.

Tomographic reconstructions of T and X over the seven zones. Left panel: Φ=1.0. Left panel: Φ=0.5. Treatment of the Lorentzian width was the same as that in Fig. 4. The adiabatic flame temperature and concentration obtained from equilibrium calculations are: T=2379 K and X=0.347 at Φ=1.0; T=1647 K and X=0.190 at Φ=0.5. The flame temperatures measured by CARS are: T=2400 K at Φ=1.0; T=1625 K at Φ=0.5. A constant Lorentzian width (νL ) was used in evaluating the Voigt lineshape: νL =0.13 cm-1 for Φ=1.0 and νL =0.14 cm-1 for Φ=0.5. The dimensions of the zones are not drawn to scale.

Fig. 7.
Fig. 7.

The T and X phantoms used to investigate the sensitivity of the tomographic algorithm to initial guesses.

Fig. 8.
Fig. 8.

The evolution of Fmin during the minimization with different initial guesses.

Fig. 9.
Fig. 9.

The T distributions reconstructed with different initial guesses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p(Lj,λi)=ab k S (λk,T()) · X () · Φ (λkλi) · P · dℓ
D(Trec,Xrec)=j=1J i=1I [pm(Lj,λi)pc(Lj,λi)]2pm(Lj,λi)2
F(Trec,Xrec)=D(Trec,Xrec)+γT·RT (Trec)+γX·RX(Xrec)

Metrics