Abstract

We report on a new class of polymer photonic crystal fibers for low-loss guidance of THz radiation. The use of the cyclic olefin copolymer Topas, in combination with advanced fabrication technology, results in bendable THz fibers with unprecedented low loss and low material dispersion in the THz regime. We demonstrate experimentally how the dispersion may be engineered by fabricating both high- and low-dispersion fibers with zero-dispersion frequency in the regime 0.5-0.6 THz. Near-field, frequency-resolved characterization with high spatial resolution of the amplitude and phase of the modal structure proves that the fiber is single-moded over a wide frequency range, and we see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber. Transmission spectroscopy demonstrates low-loss propagation (< 0.1 dB/cm loss at 0.6 THz) over a wide frequency range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, "Cutting-edge teraherz technology," Nat. Photon. 1, 97-105 (2007)
    [CrossRef]
  2. Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
    [CrossRef] [PubMed]
  3. C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
    [CrossRef] [PubMed]
  4. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Express 16, 7407-7417 (2008)
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997)
    [CrossRef] [PubMed]
  6. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
    [CrossRef]
  7. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008)
    [CrossRef] [PubMed]
  8. S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845-8854 (2008)
    [CrossRef] [PubMed]
  9. S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Commun. 282, 36-38 (2009)
    [CrossRef]
  10. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000)
    [CrossRef]
  11. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000)
    [CrossRef]
  12. R.  Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001)
    [CrossRef]
  13. R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001)
    [CrossRef]
  14. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004)
    [CrossRef] [PubMed]
  15. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006)
    [CrossRef] [PubMed]
  16. B. Bowden, J. A. Harrington, and O. Mitrofanov, "Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation," Opt. Lett. 32, 2945-2947 (2007)
    [CrossRef] [PubMed]
  17. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
    [CrossRef]
  18. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
    [CrossRef]
  19. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).
    [CrossRef] [PubMed]
  20. C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. C Eijkelenberg, "Transmission of terahertz radiation using a microstructured polymer optical fiber," Opt. Lett. 33, 902-904 (2008)
    [CrossRef] [PubMed]
  21. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
    [CrossRef]
  22. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. Kjær, and L. Lindvold, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460-462 (2007).
    [CrossRef] [PubMed]
  23. M. D. Nielsen and N. A. Mortensen, "Photonic crystal fibers design based on the v-parameter," Opt. Lett. 11, 2762-2764 (2003)
  24. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990)
    [CrossRef]
  25. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulse from bias semiconductor antennas," J. Opt. Soc. Am. B 13, 2424-2436 (1996)
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press 2007)
  27. G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
    [CrossRef]
  28. J. Toft Kristensen, A. Houmann, X. Liu, and D. Turchinovich, "Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression," Opt. Express 16, 9986-9995 (2008)
    [CrossRef]
  29. Y. H. Lo and R. Leonhardt, "Aspheric lenses for terahertz imaging," Opt. Express 16, 15991-15998 (2008)
    [CrossRef] [PubMed]

2009 (1)

S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Commun. 282, 36-38 (2009)
[CrossRef]

2008 (9)

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

C. S. Ponseca, Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. C Eijkelenberg, "Transmission of terahertz radiation using a microstructured polymer optical fiber," Opt. Lett. 33, 902-904 (2008)
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008)
[CrossRef] [PubMed]

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Express 16, 7407-7417 (2008)
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845-8854 (2008)
[CrossRef] [PubMed]

J. Toft Kristensen, A. Houmann, X. Liu, and D. Turchinovich, "Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression," Opt. Express 16, 9986-9995 (2008)
[CrossRef]

Y. H. Lo and R. Leonhardt, "Aspheric lenses for terahertz imaging," Opt. Express 16, 15991-15998 (2008)
[CrossRef] [PubMed]

2007 (4)

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. Kjær, and L. Lindvold, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460-462 (2007).
[CrossRef] [PubMed]

B. Bowden, J. A. Harrington, and O. Mitrofanov, "Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation," Opt. Lett. 32, 2945-2947 (2007)
[CrossRef] [PubMed]

M. Tonouchi, "Cutting-edge teraherz technology," Nat. Photon. 1, 97-105 (2007)
[CrossRef]

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

2006 (1)

2004 (2)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004)
[CrossRef] [PubMed]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

2003 (1)

M. D. Nielsen and N. A. Mortensen, "Photonic crystal fibers design based on the v-parameter," Opt. Lett. 11, 2762-2764 (2003)

2002 (2)

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

2001 (3)

2000 (2)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000)
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000)
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

Adam, A. J. L.

Ahn, K. J.

Argyros, A.

Atakaramians, S.

S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Commun. 282, 36-38 (2009)
[CrossRef]

S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16, 8845-8854 (2008)
[CrossRef] [PubMed]

Bang, O.

Bassett, I.

Birks, T. A.

Bowden, B.

Brok, J. M.

Chen, H.-W.

Chen, J. Y.

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

Chen, L.-J.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008)
[CrossRef] [PubMed]

Ehrke, H.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Eijkelenberg, M. A. C

Emiliyanov, G.

Estacio, E.

Fattinger, Ch.

Fleming, S.

Gallot, G.

Geng, Y. F.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

Grischkowsky, D.

Haglund, R. F.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Halabica, A.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008)
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
[CrossRef]

He, Y.

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

Hoiby, P. E.

Houmann, A.

Huber, R.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Issa, N. A.

Jacobsen, R. H.

Jamison, S. P.

Jensen, J. B.

Kang, J. H.

Kao, T.-F.

Keiding, S. R.

Kim, D. S.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

Kjær, E.

Knab, J. R.

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

Knight, J. C.

Ku, P. I.

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

Kübler, C.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Large, M. C. J.

Leitenstorfer, A.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Leonhardt, R.

Lindvold, L.

Liu, X.

Lo, Y. H.

Lopez, R.

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Lu, J.-Y.

Manos, S.

Markelz, A. G.

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

Martijn de Sterke, C.

McGowan, R. W.

McPhedran, R. C.

Mendis, R.

Mendis, R.

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001)
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000)
[CrossRef]

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004)
[CrossRef] [PubMed]

Mortensen, N. A.

M. D. Nielsen and N. A. Mortensen, "Photonic crystal fibers design based on the v-parameter," Opt. Lett. 11, 2762-2764 (2003)

Nagel, M.

Nicorovici, N. A. P.

Nielsen, M. D.

M. D. Nielsen and N. A. Mortensen, "Photonic crystal fibers design based on the v-parameter," Opt. Lett. 11, 2762-2764 (2003)

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

Park, Q. H.

Pedersen, L. H.

Planken, P. C. M.

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, "Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures," Opt. Express 16, 7407-7417 (2008)
[CrossRef] [PubMed]

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

Pobre, R.

Ponseca, C. S.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

Russell, P. St. J.

Sarukura, N.

Seo, M. A.

Shouten, R. N.

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

Skorobogatiy, M.

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008)
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
[CrossRef]

Sun, C.-K.

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

Tan, X. L.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

Toft Kristensen, J.

Tonouchi, M.

M. Tonouchi, "Cutting-edge teraherz technology," Nat. Photon. 1, 97-105 (2007)
[CrossRef]

Turchinovich, D.

Uhd Jepsen, P.

van der Valk, N.

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

van Eijkelenborg, M. A.

van Exter, M.

Wang, K.

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004)
[CrossRef] [PubMed]

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

Wenckebach, W. Th.

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

Yao, J. Q.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

Zagari, J.

Zhao, G.

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

Appl. Phys. B (1)

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, "Transmission loss and dispersion in plastic terahertz photonic band-gap fibers," Appl. Phys. B 91, 333-336 (2008)
[CrossRef]

Appl. Phys. Lett. (2)

A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101 (2008)
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002)
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001)
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000)
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. 43, L317-L319 (2004)
[CrossRef]

Nat. Photon. (1)

M. Tonouchi, "Cutting-edge teraherz technology," Nat. Photon. 1, 97-105 (2007)
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004)
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Atakaramians, S. Afshar V. B. M. Fischer, D. Abbott, and T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Commun. 282, 36-38 (2009)
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

Y. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, "Protein dynamical transition does not require protein structure," Phys. Rev. Lett. 101, 178103 (2008)
[CrossRef] [PubMed]

C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr., and A. Leitenstorfer, "Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2," Phys. Rev. Lett. 99, 116401 (2007)
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Shouten, N. van der Valk,W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002)
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Material loss in the 0.2-1.6 THz range of bulk Topas and bulk PMMA. (b) Index of refraction in the 0.2-1.5 THz range of bulk Topas and bulk PMMA.

Fig. 2.
Fig. 2.

(a) Photograph and (b) calculated fundamental guided mode structure at 1 THz of the large mode area (LMA) fiber, and (c) photograph and (d) calculated fundamental mode structure at 1 THz of the small mode area (SMA) fiber. (e) Photograph of LMA fibers shaped into 90° bends.

Fig. 3.
Fig. 3.

Spectrogram and measured temporal profile of the THz pulse after propagation through (a) 29 mm LMA fiber and (b) 26 mm SMA fiber. The color scale is linear and shows the spectral amplitude of the THz field. Calculated dispersion parameter β 2 of (c) the LMA fiber and (d) the SMA fiber. Positive values of β 2 indicate normal dispersion, negative values indicate anomalous dispersion.

Fig. 4.
Fig. 4.

(a) Reflection THz-TDS geometry for constant in- and outcoupling of the THz signal during loss measurements. (b) Time traces of THz pulses propagated through the specified distance in the LMA fiber. Pulses have been shifted in time and offset vertically for clarity. (c) Time-averaged loss of the LMA fiber (solid square symbols). The error bars are conservative estimates of the standard deviation, based on two subsequent measurements of the same length of fiber after removing and re-inserting the fiber segment in the experimental setup. The inset shows the experimental configuration for the cutback measurement and the full line shows a linear fit to the experimental data. (d) Frequency-resolved loss curve (square symbols) compared to the bulk loss in Topas® (gray line). The error bars show the standard deviation between three measurements on different fiber lengths.

Fig. 5.
Fig. 5.

Measured modal structure of the electric field of the propagating mode through the LMA fiber at (a) 0.2 THz and (b) 1.0 THz, and through the SMA fiber at (c) 0.2 THz and (d) 1.0 THz. Panels (e)-(h) show the phase of the frequencies 0.15, 0.3, 0.6, and 1.0 THz across the LMA fiber facet.

Metrics