Abstract

We report the first experimental demonstration of compensating Joule losses in metallic photonic metamaterial using optically pumped PbS semiconductor quantum dots.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
    [CrossRef]
  2. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31(14), 2169–2171 (2006).
    [CrossRef] [PubMed]
  3. A. D. Boardman, Y. G. Rapoport, N. King, and V. N. Malnev, “Creating stable gain in active metamaterials,” J. Opt. Soc. Am. B 24(10), A53–A61 (2007).
    [CrossRef]
  4. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
    [CrossRef]
  5. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
    [CrossRef]
  6. O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
    [CrossRef]
  7. A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
    [CrossRef]
  8. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16(24), 19504–19511 (2008).
    [CrossRef] [PubMed]
  9. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials,” Opt. Express 16(25), 20974–20980 (2008).
    [CrossRef] [PubMed]
  10. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [CrossRef]
  11. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008).
    [CrossRef] [PubMed]
  12. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  14. E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [CrossRef] [PubMed]
  15. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
    [CrossRef]
  16. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
    [CrossRef]

2009 (1)

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (5)

A. D. Boardman, Y. G. Rapoport, N. King, and V. N. Malnev, “Creating stable gain in active metamaterials,” J. Opt. Soc. Am. B 24(10), A53–A61 (2007).
[CrossRef]

A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
[CrossRef]

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
[CrossRef]

A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
[CrossRef]

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31(14), 2169–2171 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Ågren, H.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Boardman, A. D.

Bratkovsky, A.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Cao, J.-X.

Chakrabarti, S.

Chen, Y.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Dong, Z.-G.

Ebbesen, T. W.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Fedotov, V. A.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Fu, Y.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

García-Pomar, J. L.

Govyadinov, A. A.

A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
[CrossRef]

Holmström, P.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Kim, H.

A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
[CrossRef]

King, N.

Klein, S.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Kozyrev, A. B.

A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
[CrossRef]

Li, T.

Linden, S.

Liu, H.

Liu, X.-X.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

Malnev, V. N.

Meinzer, N.

Noginov, M. A.

A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
[CrossRef]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Plum, E.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
[CrossRef]

Ponizovskaya, E.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Popov, A. K.

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ramakrishna, S. A.

Rapoport, Y. G.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ruther, M.

Sarychev, A. K.

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
[CrossRef]

Shalaev, V. M.

Shamonina, E.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[CrossRef]

Solymar, L.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[CrossRef]

Soukoulis, C. M.

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Sydoruk, O.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[CrossRef]

Tartakovsky, G.

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
[CrossRef]

Thylén, L.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Tsai, D. P.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

van der Weide, D. W.

A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
[CrossRef]

Wanare, H.

Wang, S.-M.

Wang, S.-Y.

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

Wegener, M.

Zhang, X.

Zheludev, N. I.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, S.-N.

Zhu, Z.-H.

Adv. Mater. (1)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching,” Adv. Mater. 18(10), 1267–1270 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

A. B. Kozyrev, H. Kim, and D. W. van der Weide, “Parametric amplification in left-handed transmission line media,” Appl. Phys. Lett. 88(26), 264101 (2006).
[CrossRef]

A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103 (2007).
[CrossRef]

A. Bratkovsky, E. Ponizovskaya, S.-Y. Wang, P. Holmström, L. Thylén, Y. Fu, and H. Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss,” Appl. Phys. Lett. 93(19), 193106 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[CrossRef]

Nat. Photonics (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical Activity without Chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Photonic metamaterial hybridized with semiconductor quantum dots. The insets show the metamaterial unit cell and an SEM image of the actual metamaterial structure.

Fig. 2
Fig. 2

Transmission spectra of (a) the metamaterial before deposition of quantum dots and (b) the metamaterial after deposition of PbS quantum dots. Blue lines correspond to x-polarization, black lines correspond to y-polarization and a differential spectrum Ty-Tx is shown in gray. The trapped-mode resonance for y-polarization is marked by a gray shaded region. (c) Transmission spectrum of PbS quantum dots on a glass substrate (blue line). The resonant curves show the change ΔT of the transmission signal due to optically pumping the quantum dot layer on the glass substrate. (d) Difference between pump-induced changes of the transmission signal for x and y-polarizations for different levels of pumping.

Metrics