Abstract

In this study, we demonstrate that periods of metallic gratings on elastomeric substrates can be tuned with external strain and hence are found to control the resonance condition of surface plasmon polaritons. We have excited the plasmon resonance on the elastomeric grating coated with gold and silver. The grating period is increased up to 25% by applying an external mechanical strain. The tunability of the elastomeric substrate provides the opportunity to use such gratings as efficient surface enhanced Raman spectroscopy substrates. It’s been demonstrated that the Raman signal can be maximized by applying an external mechanical strain to the elastomeric grating.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
    [CrossRef]
  2. H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
    [CrossRef]
  3. J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
    [CrossRef] [PubMed]
  4. Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
    [CrossRef]
  5. W. A. Weimer andM. J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164-3166 (2001).
    [CrossRef]
  6. A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
    [CrossRef]
  7. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
    [CrossRef]
  8. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
    [CrossRef]
  9. H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).
  10. G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
    [CrossRef] [PubMed]
  11. G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
    [CrossRef]
  12. R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
    [CrossRef]
  13. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
    [CrossRef]
  14. J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17,930-17,935 (2004).
    [CrossRef]
  15. Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
    [CrossRef] [PubMed]
  16. P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
    [CrossRef]
  17. A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, "Light scanner based on a viscoelastic stretchable grating," Opt. Lett. 30, 949-951 (2005).
    [CrossRef] [PubMed]
  18. A. N. Simonov, S. Grabarnik, and G. Vdovin, "Stretchable diffraction gratings for spectrometry," Opt. Express 15, 9784-9792 (2007).
    [CrossRef] [PubMed]
  19. D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
    [CrossRef]
  20. A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
    [CrossRef]
  21. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  22. R. Schasfoort and A. Tudos, Handbook of Surface Plasmon Resonance (RSC, Cambridge, UK, 2008).
    [CrossRef]
  23. R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
    [CrossRef]
  24. T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
    [CrossRef]

2008 (6)

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

2007 (2)

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

A. N. Simonov, S. Grabarnik, and G. Vdovin, "Stretchable diffraction gratings for spectrometry," Opt. Express 15, 9784-9792 (2007).
[CrossRef] [PubMed]

2006 (4)

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

2005 (4)

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, "Light scanner based on a viscoelastic stretchable grating," Opt. Lett. 30, 949-951 (2005).
[CrossRef] [PubMed]

2004 (3)

J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17,930-17,935 (2004).
[CrossRef]

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

2001 (1)

W. A. Weimer andM. J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164-3166 (2001).
[CrossRef]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Akhzar-Mehr, O.

Aktas, O. C.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Aroca, R. F.

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Aydinli, A.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
[CrossRef]

Bai, C. L.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

Barretto, J. T.

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Becker, J.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Biswas, A.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Chan, B. O.

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Chen, D. M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Chen, H. L.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

Chen, S. H.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

Chen, Y.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Culaba, I. B.

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Dana, A.

A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
[CrossRef]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Dyer, M. J.

W. A. Weimer andM. J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164-3166 (2001).
[CrossRef]

Ertas, G.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Faupel, F.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Grabarnik, S.

Guerrero, R. A.

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Halas, N. J.

J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17,930-17,935 (2004).
[CrossRef]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Hsieh, K. C.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

Huang, C. M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Huang, W. M.

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Huang, Y.

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

Huang, Z.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

Hui, C. Y.

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Jackson, J. B.

J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17,930-17,935 (2004).
[CrossRef]

Jagota, A.

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Jakab, A.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

Jiang, H.

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

Jiang, L.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

Jin, P.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Khalavka, Y.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Khang, D.-Y.

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

Kocabas, A.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
[CrossRef]

Lacour, S. P.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Li, T.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

Liang, H. P.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

Lin, C. H.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

Lin, P. C.

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Liu, G. L.

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

Matsubara, S.

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Nazri, G. A.

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Nogami, M.

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Rogers, J.

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

Ross, D. J.

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Saeed, U.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Schubert, O.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Schurmann, U.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Senlik, S. S.

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

Shi, J. L.

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Simonov, A. N.

Sonnichsen, C.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Strunskus, T.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Suo, Z.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

Tazawa, M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Uy, J. L. V.

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Vajpayee, S.

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

Vdovin, G.

Wagner, S.

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

Wan, L. J.

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

Weimer, W. A.

W. A. Weimer andM. J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164-3166 (2001).
[CrossRef]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Xu, G.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Yang, S.

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Yang, Y.

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Zaporojtchenko, V.

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Zins, I.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

W. A. Weimer andM. J. Dyer, "Tunable surface plasmon resonance silver films," Appl. Phys. Lett. 79, 3164-3166 (2001).
[CrossRef]

A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, "Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems," Appl. Phys. Lett. 84, 2655-2657 (2004).
[CrossRef]

A. Kocabas, A. Dana, and A. Aydinli, "Excitation of a surface plasmon with an elastomeric grating," Appl. Phys. Lett. 89, 041123 (2006).
[CrossRef]

T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates," Appl. Phys. Lett. 85, 3435-3437 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, "Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance," J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

J. Phys. Chem. B (3)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10,549-10,556 (2000).
[CrossRef]

H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, "Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes," J. Phys. Chem. B 109, 7795-7800 (2005).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface plasmon resonance of silver nanoparticles on vanadium dioxide," J. Phys. Chem. B 110, 2051-2056 (2006).
[CrossRef] [PubMed]

Langmuir (1)

R. A. Alvarez-Puebla, D. J. Ross, G. A. Nazri, and R. F. Aroca, "Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance," Langmuir 21, 10,504-10,508 (2005).
[CrossRef]

Nano Lett. (3)

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, "Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods," Nano Lett. 8, 1719-1723 (2008).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8, 281-286 (2008).
[CrossRef]

Nanotech (1)

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, "Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances," Nanotech.  19, 435304 (2008).

Nanotech. (1)

Y. Yang, S. Matsubara, M. Nogami, J. L. Shi, and W. M. Huang, "One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties," Nanotech. 17, 2821-2827 (2006).
[CrossRef]

Opt. Commun. (1)

R. A. Guerrero, J. T. Barretto, J. L. V. Uy, I. B. Culaba, and B. O. Chan, "Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating," Opt. Commun. 270, 1-7 (2007).
[CrossRef]

Opt. Express (2)

A. N. Simonov, S. Grabarnik, and G. Vdovin, "Stretchable diffraction gratings for spectrometry," Opt. Express 15, 9784-9792 (2007).
[CrossRef] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12,469-12,477 (2008).
[CrossRef]

Opt. Lett. (1)

Proc. Nat. Acad. Sci. U.S.A. (1)

J. B. Jackson and N. J. Halas, "Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17,930-17,935 (2004).
[CrossRef]

Science (1)

D.-Y. Khang, H. Jiang, Y. Huang, and J. Rogers, "A Stretchable Form of Single-Crystal Silicon for Electronics on Elastomeric Substrates," Science 311, 208-212 (2006).
[CrossRef]

Sens. Actuators, B (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999).
[CrossRef]

Soft Matter. (1)

P. C. Lin, S. Vajpayee, A. Jagota, C. Y. Hui, and S. Yang, "Mechanically tunable dry adhesive from wrinkled elastomers," Soft Matter 4, 1830-1835 (2008).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

R. Schasfoort and A. Tudos, Handbook of Surface Plasmon Resonance (RSC, Cambridge, UK, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Apparent grating period as a function of the applied mechanical strain for gratings with periods of 530 nm (A) and 665 nm (B). Both elastomers are coated with 55 nm of silver.

Fig. 2.
Fig. 2.

The normal incidence reflection spectra for three different strain values of 7.5%, 15% and 23% for grating A (main) and no strain, 6.4% and 12.8% for grating B (inset).

Fig. 3.
Fig. 3.

SPR wavelength as a function of applied strain for grating A (circles) and B (triangles).

Fig. 4.
Fig. 4.

SERS spectrum of R6G molecule taken from the elastomeric grating A surface coated with 120 nm gold for strain values of 18.8%, 20.8% and 22.9%. Background of the Raman signal is corrected.

Metrics