F. Bilotti, A. Alù, and L. Vegni, “Design of miniaturized metamaterial patch Antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640–1647 (2008).

[CrossRef]

A. Erentok and R. Ziolkowski, “Metamaterial-inspired efficient electrically small antennas,” IEEE Trans. Antennas Propag. 56, 691–707 (2008).

[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

M. Antoniades and G. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antennas Propag. 56, 708–721 (2008).

[CrossRef]

G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Influence of losses on the superresolution performances of an impedance-matched negative-index material,” J. Opt. Soc. Am. B 25, 236–246 (2008).

[CrossRef]

M. Silveirinha, P. A. Belov, and C. R. Simovski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).

[CrossRef]
[PubMed]

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E 76, 046606–1–046606–12 (2007).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111–1–195111–10 (2007).

[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

P. Ikonen and S. Tretyakov, “Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method,” IEEE Trans. Microwave Theory Tech. 55, 92–99 (2007).

[CrossRef]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).

[CrossRef]

B. I. Popa and S. A. Cummer, “Direct measurment of evanescent wave enhancement inside passive metamaterials,” Phys. Rev. E 73, 0166171–016617–5 (2006).

[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using atransmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110–1–113110–4 (2006).

[CrossRef]

K. Aydin and E. Ozbay, “Negative refraction through an impedancematched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415–418 (2006).

[CrossRef]

I. Shadrivov, R. Ziolkowski, A. Zharov, and Y. Kivshar, “Excitation of guided waves in layered structures with negative refraction,” Opt. Express 13, 481–492 (2005).

[CrossRef]
[PubMed]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

K. Aydin, I. Bulu, and E. Ozbay, “Focusing of electromagnetic waves by a left-handed metamaterial flat lens,” Opt. Express 13, 8753–8759 (2005).

[CrossRef]
[PubMed]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

[CrossRef]

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003).

[CrossRef]
[PubMed]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag. 51, 2604–2611 (2003).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys.: Condens. Matter 13, 1811–1819 (2001).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

F. Bilotti, A. Alù, and L. Vegni, “Design of miniaturized metamaterial patch Antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640–1647 (2008).

[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).

[CrossRef]

M. Antoniades and G. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antennas Propag. 56, 708–721 (2008).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

F. Bilotti, A. Alù, and L. Vegni, “Design of miniaturized metamaterial patch Antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640–1647 (2008).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

B. I. Popa and S. A. Cummer, “Direct measurment of evanescent wave enhancement inside passive metamaterials,” Phys. Rev. E 73, 0166171–016617–5 (2006).

[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

M. Antoniades and G. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antennas Propag. 56, 708–721 (2008).

[CrossRef]

A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag. 51, 2604–2611 (2003).

[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).

[CrossRef]

A. Erentok and R. Ziolkowski, “Metamaterial-inspired efficient electrically small antennas,” IEEE Trans. Antennas Propag. 56, 691–707 (2008).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag. 51, 2604–2611 (2003).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using atransmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110–1–113110–4 (2006).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

P. Ikonen and S. Tretyakov, “Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method,” IEEE Trans. Microwave Theory Tech. 55, 92–99 (2007).

[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

[CrossRef]

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E 76, 046606–1–046606–12 (2007).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

B. I. Popa and S. A. Cummer, “Direct measurment of evanescent wave enhancement inside passive metamaterials,” Phys. Rev. E 73, 0166171–016617–5 (2006).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys.: Condens. Matter 13, 1811–1819 (2001).

[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

M. Silveirinha, P. A. Belov, and C. R. Simovski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).

[CrossRef]
[PubMed]

M. Silveirinha, P. A. Belov, and C. R. Simovski, “Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods,” Opt. Lett. 33, 1726–1728 (2008).

[CrossRef]
[PubMed]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111–1–195111–10 (2007).

[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E 76, 046606–1–046606–12 (2007).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

P. Ikonen and S. Tretyakov, “Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method,” IEEE Trans. Microwave Theory Tech. 55, 92–99 (2007).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111–1–195111–10 (2007).

[CrossRef]

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E 76, 046606–1–046606–12 (2007).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

F. Bilotti, A. Alù, and L. Vegni, “Design of miniaturized metamaterial patch Antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640–1647 (2008).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial designtheory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003).

[CrossRef]

A. Grbic and G. V. Eleftheriades, “Periodic analysis of a 2-D negative refractive index transmission line structure,” IEEE Trans. Antennas Propag. 51, 2604–2611 (2003).

[CrossRef]

F. Bilotti, A. Alù, and L. Vegni, “Design of miniaturized metamaterial patch Antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640–1647 (2008).

[CrossRef]

A. Erentok and R. Ziolkowski, “Metamaterial-inspired efficient electrically small antennas,” IEEE Trans. Antennas Propag. 56, 691–707 (2008).

[CrossRef]

M. Antoniades and G. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antennas Propag. 56, 708–721 (2008).

[CrossRef]

N. V. Kantartzis, D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, “A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates,” IEEE Trans. Magn. 43, 1329–1332 (2007).

[CrossRef]

P. Ikonen and S. Tretyakov, “Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method,” IEEE Trans. Microwave Theory Tech. 55, 92–99 (2007).

[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microwave Theory Tech. 52, 980–992 (2004).

[CrossRef]

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).

[CrossRef]

P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microwave Theory Tech. 53, 1431–1442 (2005).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003).

[CrossRef]

K. Aydin and E. Ozbay, “Negative refraction through an impedancematched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415–418 (2006).

[CrossRef]

G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Influence of losses on the superresolution performances of an impedance-matched negative-index material,” J. Opt. Soc. Am. B 25, 236–246 (2008).

[CrossRef]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).

[CrossRef]

R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys.: Condens. Matter 13, 1811–1819 (2001).

[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).

[CrossRef]

K. Aydin, I. Bulu, and E. Ozbay, “Focusing of electromagnetic waves by a left-handed metamaterial flat lens,” Opt. Express 13, 8753–8759 (2005).

[CrossRef]
[PubMed]

I. Shadrivov, R. Ziolkowski, A. Zharov, and Y. Kivshar, “Excitation of guided waves in layered structures with negative refraction,” Opt. Express 13, 481–492 (2005).

[CrossRef]
[PubMed]

R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104–1–195104–5 (2002).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111–1–195111–10 (2007).

[CrossRef]

J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, “Experimental characterization of magnetic resonance plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402–1–195402–7 (2005).

[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using atransmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110–1–113110–4 (2006).

[CrossRef]

F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, “Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory,” Phys. Rev. B 72, 235117–1–235117–6 (2005).

[CrossRef]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left handed materials composed of only S-shaped resonators,” Phys. Rev. E 70, 057605–1–057605–4 (2004).

[CrossRef]

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, “Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models,” Phys. Rev. E 76, 046606–1–046606–12 (2007).

[CrossRef]

B. I. Popa and S. A. Cummer, “Direct measurment of evanescent wave enhancement inside passive metamaterials,” Phys. Rev. E 73, 0166171–016617–5 (2006).

[CrossRef]

R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606–1–026606–8 (2007).

[CrossRef]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608–1–016608–7 (2004).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903–1–033903–4 (2008).

[CrossRef]