Abstract

Ytterbium offers a number of advantages as the active ion in solid-state laser crystals, but is hindered by the disadvantages of a three level lasing scheme. Yb3+-doped oxyorthosilicates have emerged in recent years as potentially quasi-four level laser materials. Two such crystals, Yb:GdYSiO5 and Yb:LuYSiO5, are investigated to determine the extent of four-level behavior. It is shown that these crystals demonstrate a significant reduction in the pump intensity required to reach threshold, but still exhibit three-level effects in terms of self-absorption, population inversion, and thermal sensitivity. The important material properties such as the coefficient of thermal expansion and the thermo-optic coefficient are measured.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-16-14-1089 .
    [CrossRef] [PubMed]
  2. C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
    [CrossRef]
  3. W. Li, H. Pan, L. Ding, H. Zeng, G. Zhao, C. Yan, L. Su, and J. Xu, “Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser,” Opt. Express 14(2), 686–695 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-686 .
    [CrossRef] [PubMed]
  4. Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).
  5. R. Beach, G. Albrecht, R. Solarz, W. Krupke, B. Comaskey, S. Mitchell, C. Brandle, and G. Berkstresser, “Q-switched laser at 912 nm using ground-state-depleted neodymium in yttrium orthosilicate,” Opt. Lett. 15(18), 1020–1022 (1990), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-15-18-1020 .
    [CrossRef] [PubMed]
  6. C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
    [CrossRef]
  7. C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
    [CrossRef]
  8. C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
    [CrossRef]
  9. M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
    [CrossRef]
  10. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:LuxSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  11. J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
    [CrossRef] [PubMed]
  12. W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
    [CrossRef] [PubMed]
  13. L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
    [CrossRef]
  14. W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
    [CrossRef]
  15. G. Turri, M. Bass, C. Klemenz, H.P. Jenssen, CREOL, University of Central Florida, and B.K. Brickeen, Penn State Electro-Optics Center are preparing a manuscript to be called “Spectroscopic Properties of Yb:LuYSiO5 and Yb:GdYSiO5”
  16. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
    [CrossRef]
  17. N. Pavel and T. Taira, “Pump-beam M2 factor approximation for design of diode fiber-coupled end-pumped lasers,” Opt. Eng. 38(11), 1806–1813 (1999).
    [CrossRef]
  18. M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
    [CrossRef]
  19. B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
    [CrossRef]
  20. W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
    [CrossRef]
  21. R. J. Beach, “Optimization of Quasi-Three Level End-Pumped Q-Switched Lasers,” IEEE J. Quantum Electron. 31(9), 1606–1613 (1995).
    [CrossRef]
  22. T. Matsui and M. H. Manghnani, “Thermal Expansion of Single-Crystal Forsterite to 1023 K by Fizeau Interferometry,” Phys. Chem. Miner. 12(4), 201–210 (1985).
    [CrossRef]
  23. P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
    [CrossRef]

2008 (1)

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

2007 (1)

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

2006 (7)

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, G. Zhao, C. Yan, L. Su, and J. Xu, “Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser,” Opt. Express 14(2), 686–695 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-686 .
[CrossRef] [PubMed]

J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
[CrossRef] [PubMed]

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:LuxSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
[CrossRef] [PubMed]

2004 (1)

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

2003 (1)

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

2001 (1)

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

1999 (1)

N. Pavel and T. Taira, “Pump-beam M2 factor approximation for design of diode fiber-coupled end-pumped lasers,” Opt. Eng. 38(11), 1806–1813 (1999).
[CrossRef]

1997 (1)

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

1995 (1)

R. J. Beach, “Optimization of Quasi-Three Level End-Pumped Q-Switched Lasers,” IEEE J. Quantum Electron. 31(9), 1606–1613 (1995).
[CrossRef]

1994 (1)

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

1993 (1)

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

1992 (1)

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

1991 (1)

1990 (1)

1985 (1)

T. Matsui and M. H. Manghnani, “Thermal Expansion of Single-Crystal Forsterite to 1023 K by Fizeau Interferometry,” Phys. Chem. Miner. 12(4), 201–210 (1985).
[CrossRef]

1973 (1)

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Aggarwal, R. L.

Albrecht, G.

Bagdasarov, Kh. S.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Balembois, F.

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Bass, M.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Beach, R.

Beach, R. J.

R. J. Beach, “Optimization of Quasi-Three Level End-Pumped Q-Switched Lasers,” IEEE J. Quantum Electron. 31(9), 1606–1613 (1995).
[CrossRef]

Berkstresser, G.

Borel, C.

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Brandle, C.

Chai, B. H. T.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Chen, Y. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Chenais, S.

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Choi, H. K.

Comaskey, B.

Deka, C.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Ding, L.

Druon, F.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:LuxSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Du, J.

Fan, T. Y.

Ferrand, B.

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Frukacz, Z.

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

Gaume, R.

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

George, J.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Georges, P.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:LuxSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Guo, C.

Gupta, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Hao, Q.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

Huang, T. M.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Jacquemet, M.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:LuxSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

Jiang, B.

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

Kaczkan, M.

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

Kaminskii, A. A.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Kao, C. F.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Kevorkov, A. M.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Krupke, W.

Lacovara, P.

Li, C.

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

Li, R.

Li, W.

Liang, X.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
[CrossRef] [PubMed]

Lu, W.

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
[CrossRef] [PubMed]

Malinowski, M.

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

Manghnani, M. H.

T. Matsui and M. H. Manghnani, “Thermal Expansion of Single-Crystal Forsterite to 1023 K by Fizeau Interferometry,” Phys. Chem. Miner. 12(4), 201–210 (1985).
[CrossRef]

Matsui, T.

T. Matsui and M. H. Manghnani, “Thermal Expansion of Single-Crystal Forsterite to 1023 K by Fizeau Interferometry,” Phys. Chem. Miner. 12(4), 201–210 (1985).
[CrossRef]

Mitchell, S.

Moncorge, R.

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Munin, E.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Nathan, T. P. S.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Nautiyal, A.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Pan, H.

Pavel, N.

N. Pavel and T. Taira, “Pump-beam M2 factor approximation for design of diode fiber-coupled end-pumped lasers,” Opt. Eng. 38(11), 1806–1813 (1999).
[CrossRef]

Pelenc, D.

Piramidowicz, R.

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

Prokhorov, A. M.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Ranganathan, K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Sarkisov, S. E.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Sarnecki, J.

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

Sharma, S. K.

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Shimony, Y.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Solarz, R.

Song, P.

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

Souriau, J. C.

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

Su, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, G. Zhao, C. Yan, L. Su, and J. Xu, “Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser,” Opt. Express 14(2), 686–695 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-686 .
[CrossRef] [PubMed]

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
[CrossRef] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Taira, T.

N. Pavel and T. Taira, “Pump-beam M2 factor approximation for design of diode fiber-coupled end-pumped lasers,” Opt. Eng. 38(11), 1806–1813 (1999).
[CrossRef]

Tevosyan, T. A.

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Thibault, F.

Wang, C. A.

Wang, C. L.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Wang, S. C.

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

Wang, X.

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

Wu, F.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

Wyon, C.

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

Wyon, Ch.

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Xu, J.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, G. Zhao, C. Yan, L. Su, and J. Xu, “Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser,” Opt. Express 14(2), 686–695 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-686 .
[CrossRef] [PubMed]

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
[CrossRef] [PubMed]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

Xu, S.

Xu, X.

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

Xu, Y.

Xu, Z.

Yan, C.

Zaouter, Y.

Zeng, H.

Zhai, H.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

Zhang, L.

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

Zhang, X. X.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

Zhao, G.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

J. Du, X. Liang, Y. Xu, R. Li, Z. Xu, C. Yan, G. Zhao, L. Su, and J. Xu, “Tunable and efficient diode-pumped Yb3+:GYSO laser,” Opt. Express 14(8), 3333–3338 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-8-3333 .
[CrossRef] [PubMed]

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, G. Zhao, C. Yan, L. Su, and J. Xu, “Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser,” Opt. Express 14(2), 686–695 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-686 .
[CrossRef] [PubMed]

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-15-6681 .
[CrossRef] [PubMed]

Zhao, Z.

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

Zheng, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

Appl. Phys. B (3)

M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, and B. Ferrand, “First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm,” Appl. Phys. B 78, 13–18 (2004).
[CrossRef]

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 µm wavelength,” Appl. Phys. B 77(1), 81–87 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Low-threshold and continuously tunable Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 89(10), 101125 (2006).
[CrossRef]

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, “Laser performance of Cr4+:Y2SiO5,” Appl. Phys. Lett. 61(18), 2141–2143 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. J. Beach, “Optimization of Quasi-Three Level End-Pumped Q-Switched Lasers,” IEEE J. Quantum Electron. 31(9), 1606–1613 (1995).
[CrossRef]

Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[CrossRef]

J. Lumin. (1)

M. Malinowski, M. Kaczkan, R. Piramidowicz, Z. Frukacz, and J. Sarnecki, “Cooperative emission in Yb3+:YAG planar epitaxial waveguides,” J. Lumin. 94(2-4), 29–33 (2001).
[CrossRef]

J. Phys. Condens. Matter (1)

C. Yan, G. Zhao, L. Su, X. Xu, L. Zhang, and J. Xu, “Growth and spectroscopic characteristics of Yb:GSO single crystal,” J. Phys. Condens. Matter 18(4), 1325–1333 (2006).
[CrossRef]

Mater. Sci. Eng. B (1)

B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, and J. Xu, “Visible luminescence in Yb3+-doped gadolinium gallium garnets,” Mater. Sci. Eng. B 137(1-3), 20–23 (2007).
[CrossRef]

Opt. Commun. (2)

C. Li, R. Moncorge, J. C. Souriau, and C. Wyon, “Efficient 2.05 µm room temperature Y2SiO5:Tm3+ cw laser,” Opt. Commun. 101(5-6), 356–360 (1993).
[CrossRef]

C. Li, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+,Er3+ at 1.57 µm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Opt. Eng. (1)

N. Pavel and T. Taira, “Pump-beam M2 factor approximation for design of diode fiber-coupled end-pumped lasers,” Opt. Eng. 38(11), 1806–1813 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Chem. Miner. (1)

T. Matsui and M. H. Manghnani, “Thermal Expansion of Single-Crystal Forsterite to 1023 K by Fizeau Interferometry,” Phys. Chem. Miner. 12(4), 201–210 (1985).
[CrossRef]

Sov. Phys. Dokl. (1)

Kh. S. Bagdasarov, A. A. Kaminskii, A. M. Kevorkov, A. M. Prokhorov, S. E. Sarkisov, and T. A. Tevosyan, “Laser properties of Y2SiO5-Nd3+ crystals irradiated at the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions,” Sov. Phys. Dokl. 18, 664–670 (1973).

Other (1)

G. Turri, M. Bass, C. Klemenz, H.P. Jenssen, CREOL, University of Central Florida, and B.K. Brickeen, Penn State Electro-Optics Center are preparing a manuscript to be called “Spectroscopic Properties of Yb:LuYSiO5 and Yb:GdYSiO5”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic of the experimental setup is shown; from right to left…fiber coupled pump light, collimating optic, focusing optic, flat HR mirror, laser crystal, and 0.5 m ROC output coupler. The laser cavity length measured 7.5 cm between mirror faces. Pump light delivered via a 400 µm core fiber.

Fig. 2
Fig. 2

Output energy per pulse and CW power versus the absorbed pump for Yb:GYSO, LYSO.

Fig. 3
Fig. 3

290 nm fluorescence observed for both pulsed and CW pumping of Yb:GYSO

Fig. 4
Fig. 4

Thermal population of the ground state must be overcome before lasing is achieved.

Tables (1)

Tables Icon

Table 1 Efficiency and threshold data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔT=Nλ2[l(n1llT+nT)]1
fth=πKcwpa2ξPabs(dn/dT)

Metrics